Abstract:Accurate tire modeling is crucial for optimizing autonomous racing vehicles, as state-of-the-art (SotA) model-based techniques rely on precise knowledge of the vehicle's parameters. Yet, system identification in dynamic racing conditions is challenging due to varying track and tire conditions. Traditional methods require extensive operational ranges, often impractical in racing scenarios. Machine learning (ML)-based methods, while improving performance, struggle with generalization and depend on accurate initialization. This paper introduces a novel on-track system identification algorithm, incorporating a neural network (NN) for error correction, which is then employed for traditional system identification with virtually generated data. Crucially, the process is iteratively reapplied, with tire parameters updated at each cycle, leading to notable improvements in accuracy in tests on a scaled vehicle. Experiments show that it is possible to learn a tire model without prior knowledge with only 30 seconds of driving data and 3 seconds of training time. This method demonstrates greater one-step prediction accuracy than the baseline nonlinear least squares (NLS) method under noisy conditions, achieving a 3.3x lower root mean square error (RMSE), and yields tire models with comparable accuracy to traditional steady-state system identification. Furthermore, unlike steady-state methods requiring large spaces and specific experimental setups, the proposed approach identifies tire parameters directly on a race track in dynamic racing environments.
Abstract:Head-to-head racing against opponents is a challenging and emerging topic in the domain of autonomous racing. We propose Predictive Spliner, a data-driven overtaking planner that learns the behavior of opponents through Gaussian Process (GP) regression, which is then leveraged to compute viable overtaking maneuvers in future sections of the racing track. Experimentally validated on a 1:10 scale autonomous racing platform using Light Detection and Ranging (LiDAR) information to perceive the opponent, Predictive Spliner outperforms State-of-the-Art (SotA) algorithms by overtaking opponents at up to 83.1% of its own speed, being on average 8.4% faster than the previous best-performing method. Additionally, it achieves an average success rate of 84.5%, which is 47.6% higher than the previous best-performing method. The method maintains computational efficiency with a Central Processing Unit (CPU) load of 22.79% and a computation time of 8.4 ms, evaluated on a Commercial off-the-Shelf (CotS) Intel i7-1165G7, making it suitable for real-time robotic applications. These results highlight the potential of Predictive Spliner to enhance the performance and safety of autonomous racing vehicles. The code for Predictive Spliner is available at: https://github.com/ForzaETH/predictive-spliner.
Abstract:Accurate detection and tracking of surrounding objects is essential to enable self-driving vehicles. While Light Detection and Ranging (LiDAR) sensors have set the benchmark for high performance, the appeal of camera-only solutions lies in their cost-effectiveness. Notably, despite the prevalent use of Radio Detection and Ranging (RADAR) sensors in automotive systems, their potential in 3D detection and tracking has been largely disregarded due to data sparsity and measurement noise. As a recent development, the combination of RADARs and cameras is emerging as a promising solution. This paper presents Camera-RADAR 3D Detection and Tracking (CR3DT), a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT). Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities, by incorporating the spatial and velocity information of the RADAR sensor. Experimental results demonstrate an absolute improvement in detection performance of 5.3% in mean Average Precision (mAP) and a 14.9% increase in Average Multi-Object Tracking Accuracy (AMOTA) on the nuScenes dataset when leveraging both modalities. CR3DT bridges the gap between high-performance and cost-effective perception systems in autonomous driving, by capitalizing on the ubiquitous presence of RADAR in automotive applications.
Abstract:Autonomous racing in robotics combines high-speed dynamics with the necessity for reliability and real-time decision-making. While such racing pushes software and hardware to their limits, many existing full-system solutions necessitate complex, custom hardware and software, and usually focus on Time-Trials rather than full unrestricted Head-to-Head racing, due to financial and safety constraints. This limits their reproducibility, making advancements and replication feasible mostly for well-resourced laboratories with comprehensive expertise in mechanical, electrical, and robotics fields. Researchers interested in the autonomy domain but with only partial experience in one of these fields, need to spend significant time with familiarization and integration. The ForzaETH Race Stack addresses this gap by providing an autonomous racing software platform designed for F1TENTH, a 1:10 scaled Head-to-Head autonomous racing competition, which simplifies replication by using commercial off-the-shelf hardware. This approach enhances the competitive aspect of autonomous racing and provides an accessible platform for research and development in the field. The ForzaETH Race Stack is designed with modularity and operational ease of use in mind, allowing customization and adaptability to various environmental conditions, such as track friction and layout. Capable of handling both Time-Trials and Head-to-Head racing, the stack has demonstrated its effectiveness, robustness, and adaptability in the field by winning the official F1TENTH international competition multiple times.
Abstract:This work introduces SynPF, an MCL-based algorithm tailored for high-speed racing environments. Benchmarked against Cartographer, a state-of-the-art pose-graph SLAM algorithm, SynPF leverages synergies from previous particle-filtering methods and synthesizes them for the high-performance racing domain. Our extensive in-field evaluations reveal that while Cartographer excels under nominal conditions, it struggles when subjected to wheel-slip, a common phenomenon in a racing scenario due to varying grip levels and aggressive driving behaviour. Conversely, SynPF demonstrates robustness in these challenging conditions and a low-latency computation time of 1.25 ms on on-board computers without a GPU. Using the F1TENTH platform, a 1:10 scaled autonomous racing vehicle, this work not only highlights the vulnerabilities of existing algorithms in high-speed scenarios, tested up until 7.6 m/s, but also emphasizes the potential of SynPF as a viable alternative, especially in deteriorating odometry conditions.
Abstract:Range-measuring sensors play a critical role in autonomous driving systems. While LiDAR technology has been dominant, its vulnerability to adverse weather conditions is well-documented. This paper focuses on secondary adverse conditions and the implications of ill-reflective surfaces on range measurement sensors. We assess the influence of this condition on the three primary ranging modalities used in autonomous mobile robotics: LiDAR, RADAR, and Depth-Camera. Based on accurate experimental evaluation the papers findings reveal that under ill-reflectivity, LiDAR ranging performance drops significantly to 33% of its nominal operating conditions, whereas RADAR and Depth-Cameras maintain up to 100% of their nominal distance ranging capabilities. Additionally, we demonstrate on a 1:10 scaled autonomous racecar how ill-reflectivity adversely impacts downstream robotics tasks, highlighting the necessity for robust range sensing in autonomous driving.
Abstract:Autonomous racing is a research field gaining large popularity, as it pushes autonomous driving algorithms to their limits and serves as a catalyst for general autonomous driving. For scaled autonomous racing platforms, the computational constraint and complexity often limit the use of Model Predictive Control (MPC). As a consequence, geometric controllers are the most frequently deployed controllers. They prove to be performant while yielding implementation and operational simplicity. Yet, they inherently lack the incorporation of model dynamics, thus limiting the race car to a velocity domain where tire slip can be neglected. This paper presents Model- and Acceleration-based Pursuit (MAP) a high-performance model-based trajectory tracking algorithm that preserves the simplicity of geometric approaches while leveraging tire dynamics. The proposed algorithm allows accurate tracking of a trajectory at unprecedented velocities compared to State-of-the-Art (SotA) geometric controllers. The MAP controller is experimentally validated and outperforms the reference geometric controller four-fold in terms of lateral tracking error, yielding a tracking error of 0.055m at tested speeds up to 11m/s.
Abstract:Autonomous racing is becoming popular for academic and industry researchers as a test for general autonomous driving by pushing perception, planning, and control algorithms to their limits. While traditional control methods such as MPC are capable of generating an optimal control sequence at the edge of the vehicles physical controllability, these methods are sensitive to the accuracy of the modeling parameters. This paper presents TC-Driver, a RL approach for robust control in autonomous racing. In particular, the TC-Driver agent is conditioned by a trajectory generated by any arbitrary traditional high-level planner. The proposed TC-Driver addresses the tire parameter modeling inaccuracies by exploiting the heuristic nature of RL while leveraging the reliability of traditional planning methods in a hierarchical control structure. We train the agent under varying tire conditions, allowing it to generalize to different model parameters, aiming to increase the racing capabilities of the system in practice. The proposed RL method outperforms a non-learning-based MPC with a 2.7 lower crash ratio in a model mismatch setting, underlining robustness to parameter discrepancies. In addition, the average RL inference duration is 0.25 ms compared to the average MPC solving time of 11.5 ms, yielding a nearly 40-fold speedup, allowing for complex control deployment in computationally constrained devices. Lastly, we show that the frequently utilized end-to-end RL architecture, as a control policy directly learned from sensory input, is not well suited to model mismatch robustness nor track generalization. Our realistic simulations show that TC-Driver achieves a 6.7 and 3-fold lower crash ratio under model mismatch and track generalization settings, while simultaneously achieving lower lap times than an end-to-end approach, demonstrating the viability of TC-driver to robust autonomous racing.