Perception within autonomous driving is nearly synonymous with Neural Networks (NNs). Yet, the domain of autonomous racing is often characterized by scaled, computationally limited robots used for cost-effectiveness and safety. For this reason, opponent detection and tracking systems typically resort to traditional computer vision techniques due to computational constraints. This paper introduces TinyCenterSpeed, a streamlined adaptation of the seminal CenterPoint method, optimized for real-time performance on 1:10 scale autonomous racing platforms. This adaptation is viable even on OBCs powered solely by Central Processing Units (CPUs), as it incorporates the use of an external Tensor Processing Unit (TPU). We demonstrate that, compared to Adaptive Breakpoint Detector (ABD), the current State-of-the-Art (SotA) in scaled autonomous racing, TinyCenterSpeed not only improves detection and velocity estimation by up to 61.38% but also supports multi-opponent detection and estimation. It achieves real-time performance with an inference time of just 7.88 ms on the TPU, significantly reducing CPU utilization 8.3-fold.