ETH Zurich, Switzerland
Abstract:Autonomous racing presents a complex environment requiring robust controllers capable of making rapid decisions under dynamic conditions. While traditional controllers based on tire models are reliable, they often demand extensive tuning or system identification. RL methods offer significant potential due to their ability to learn directly from interaction, yet they typically suffer from the Sim-to-Reall gap, where policies trained in simulation fail to perform effectively in the real world. In this paper, we propose RLPP, a residual RL framework that enhances a PP controller with an RL-based residual. This hybrid approach leverages the reliability and interpretability of PP while using RL to fine-tune the controller's performance in real-world scenarios. Extensive testing on the F1TENTH platform demonstrates that RLPP improves lap times by up to 6.37 %, closing the gap to the SotA methods by more than 52 % and providing reliable performance in zero-shot real-world deployment, overcoming key challenges associated with the Sim-to-Real transfer and reducing the performance gap from simulation to reality by more than 8-fold when compared to the baseline RL controller. The RLPP framework is made available as an open-source tool, encouraging further exploration and advancement in autonomous racing research. The code is available at: www.github.com/forzaeth/rlpp.
Abstract:Accurate tire modeling is crucial for optimizing autonomous racing vehicles, as state-of-the-art (SotA) model-based techniques rely on precise knowledge of the vehicle's parameters. Yet, system identification in dynamic racing conditions is challenging due to varying track and tire conditions. Traditional methods require extensive operational ranges, often impractical in racing scenarios. Machine learning (ML)-based methods, while improving performance, struggle with generalization and depend on accurate initialization. This paper introduces a novel on-track system identification algorithm, incorporating a neural network (NN) for error correction, which is then employed for traditional system identification with virtually generated data. Crucially, the process is iteratively reapplied, with tire parameters updated at each cycle, leading to notable improvements in accuracy in tests on a scaled vehicle. Experiments show that it is possible to learn a tire model without prior knowledge with only 30 seconds of driving data and 3 seconds of training time. This method demonstrates greater one-step prediction accuracy than the baseline nonlinear least squares (NLS) method under noisy conditions, achieving a 3.3x lower root mean square error (RMSE), and yields tire models with comparable accuracy to traditional steady-state system identification. Furthermore, unlike steady-state methods requiring large spaces and specific experimental setups, the proposed approach identifies tire parameters directly on a race track in dynamic racing environments.
Abstract:Head-to-head racing against opponents is a challenging and emerging topic in the domain of autonomous racing. We propose Predictive Spliner, a data-driven overtaking planner that learns the behavior of opponents through Gaussian Process (GP) regression, which is then leveraged to compute viable overtaking maneuvers in future sections of the racing track. Experimentally validated on a 1:10 scale autonomous racing platform using Light Detection and Ranging (LiDAR) information to perceive the opponent, Predictive Spliner outperforms State-of-the-Art (SotA) algorithms by overtaking opponents at up to 83.1% of its own speed, being on average 8.4% faster than the previous best-performing method. Additionally, it achieves an average success rate of 84.5%, which is 47.6% higher than the previous best-performing method. The method maintains computational efficiency with a Central Processing Unit (CPU) load of 22.79% and a computation time of 8.4 ms, evaluated on a Commercial off-the-Shelf (CotS) Intel i7-1165G7, making it suitable for real-time robotic applications. These results highlight the potential of Predictive Spliner to enhance the performance and safety of autonomous racing vehicles. The code for Predictive Spliner is available at: https://github.com/ForzaETH/predictive-spliner.
Abstract:This paper presents an open-source miniature car-like robot with low-cost sensing and a pipeline for optimization-based system identification, state estimation, and control. The overall robotics platform comes at a cost of less than $700 and thus significantly simplifies the verification of advanced algorithms in a realistic setting. We present a modified bicycle model with Pacejka tire forces to model the dynamics of the considered all-wheel drive vehicle and to prevent singularities of the model at low velocities. Furthermore, we provide an optimization-based system identification approach and a moving horizon estimation (MHE) scheme. In extensive hardware experiments, we show that the presented system identification approach results in a model with high prediction accuracy, while the MHE results in accurate state estimates. Finally, the overall closed-loop system is shown to perform well even in the presence of sensor failure for limited time intervals. All hardware, firmware, and control and estimation software is released under a BSD 2-clause license to promote widespread adoption and collaboration within the community.
Abstract:In Model Predictive Control (MPC), discrepancies between the actual system and the predictive model can lead to substantial tracking errors and significantly degrade performance and reliability. While such discrepancies can be alleviated with more complex models, this often complicates controller design and implementation. By leveraging the fact that many trajectories of interest are periodic, we show that perfect tracking is possible when incorporating a simple observer that estimates and compensates for periodic disturbances. We present the design of the observer and the accompanying tracking MPC scheme, proving that their combination achieves zero tracking error asymptotically, regardless of the complexity of the unmodelled dynamics. We validate the effectiveness of our method, demonstrating asymptotically perfect tracking on a high-dimensional soft robot with nearly 10,000 states and a fivefold reduction in tracking errors compared to a baseline MPC on small-scale autonomous race car experiments.
Abstract:Time-optimal quadrotor flight is an extremely challenging problem due to the limited control authority encountered at the limit of handling. Model Predictive Contouring Control (MPCC) has emerged as a leading model-based approach for time optimization problems such as drone racing. However, the standard MPCC formulation used in quadrotor racing introduces the notion of the gates directly in the cost function, creating a multi-objective optimization that continuously trades off between maximizing progress and tracking the path accurately. This paper introduces three key components that enhance the MPCC approach for drone racing. First and foremost, we provide safety guarantees in the form of a constraint and terminal set. The safety set is designed as a spatial constraint which prevents gate collisions while allowing for time-optimization only in the cost function. Second, we augment the existing first principles dynamics with a residual term that captures complex aerodynamic effects and thrust forces learned directly from real world data. Third, we use Trust Region Bayesian Optimization (TuRBO), a state of the art global Bayesian Optimization algorithm, to tune the hyperparameters of the MPC controller given a sparse reward based on lap time minimization. The proposed approach achieves similar lap times to the best state-of-the-art RL and outperforms the best time-optimal controller while satisfying constraints. In both simulation and real-world, our approach consistently prevents gate crashes with 100\% success rate, while pushing the quadrotor to its physical limit reaching speeds of more than 80km/h.
Abstract:Autonomous racing in robotics combines high-speed dynamics with the necessity for reliability and real-time decision-making. While such racing pushes software and hardware to their limits, many existing full-system solutions necessitate complex, custom hardware and software, and usually focus on Time-Trials rather than full unrestricted Head-to-Head racing, due to financial and safety constraints. This limits their reproducibility, making advancements and replication feasible mostly for well-resourced laboratories with comprehensive expertise in mechanical, electrical, and robotics fields. Researchers interested in the autonomy domain but with only partial experience in one of these fields, need to spend significant time with familiarization and integration. The ForzaETH Race Stack addresses this gap by providing an autonomous racing software platform designed for F1TENTH, a 1:10 scaled Head-to-Head autonomous racing competition, which simplifies replication by using commercial off-the-shelf hardware. This approach enhances the competitive aspect of autonomous racing and provides an accessible platform for research and development in the field. The ForzaETH Race Stack is designed with modularity and operational ease of use in mind, allowing customization and adaptability to various environmental conditions, such as track friction and layout. Capable of handling both Time-Trials and Head-to-Head racing, the stack has demonstrated its effectiveness, robustness, and adaptability in the field by winning the official F1TENTH international competition multiple times.
Abstract:In recent years, the increasing need for high-performance controllers in applications like autonomous driving has motivated the development of optimization routines tailored to specific control problems. In this paper, we propose an efficient inexact model predictive control (MPC) strategy for autonomous miniature racing with inherent robustness properties. We rely on a feasible sequential quadratic programming (SQP) algorithm capable of generating feasible intermediate iterates such that the solver can be stopped after any number of iterations, without jeopardizing recursive feasibility. In this way, we provide a strategy that computes suboptimal and yet feasible solutions with a computational footprint that is much lower than state-of-the-art methods based on the computation of locally optimal solutions. Under suitable assumptions on the terminal set and on the controllability properties of the system, we can state that, for any sufficiently small disturbance affecting the system's dynamics, recursive feasibility can be guaranteed. We validate the effectiveness of the proposed strategy in simulation and by deploying it onto a physical experiment with autonomous miniature race cars. Both the simulation and experimental results demonstrate that, using the feasible SQP method, a feasible solution can be obtained with moderate additional computational effort compared to strategies that resort to early termination without providing a feasible solution. At the same time, the proposed method is significantly faster than the state-of-the-art solver Ipopt.
Abstract:Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints and abstract mathematical models developed in scientific and engineering domains. As opposed to purely data-driven methods, PIML models can be trained from additional information obtained by enforcing physical laws such as energy and mass conservation. More broadly, PIML models can include abstract properties and conditions such as stability, convexity, or invariance. The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models. This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control. Specifically, the paper covers an overview of the theory, fundamental concepts and methods, tools, and applications on topics of: 1) physics-informed learning for system identification; 2) physics-informed learning for control; 3) analysis and verification of PIML models; and 4) physics-informed digital twins. The paper is concluded with a perspective on open challenges and future research opportunities.
Abstract:Mobile manipulation in robotics is challenging due to the need of solving many diverse tasks, such as opening a door or picking-and-placing an object. Typically, a basic first-principles system description of the robot is available, thus motivating the use of model-based controllers. However, the robot dynamics and its interaction with an object are affected by uncertainty, limiting the controller's performance. To tackle this problem, we propose a Bayesian multi-task learning model that uses trigonometric basis functions to identify the error in the dynamics. In this way, data from different but related tasks can be leveraged to provide a descriptive error model that can be efficiently updated online for new, unseen tasks. We combine this learning scheme with a model predictive controller, and extensively test the effectiveness of the proposed approach, including comparisons with available baseline controllers. We present simulation tests with a ball-balancing robot, and door-opening hardware experiments with a quadrupedal manipulator.