Abstract:Accurate tire modeling is crucial for optimizing autonomous racing vehicles, as state-of-the-art (SotA) model-based techniques rely on precise knowledge of the vehicle's parameters. Yet, system identification in dynamic racing conditions is challenging due to varying track and tire conditions. Traditional methods require extensive operational ranges, often impractical in racing scenarios. Machine learning (ML)-based methods, while improving performance, struggle with generalization and depend on accurate initialization. This paper introduces a novel on-track system identification algorithm, incorporating a neural network (NN) for error correction, which is then employed for traditional system identification with virtually generated data. Crucially, the process is iteratively reapplied, with tire parameters updated at each cycle, leading to notable improvements in accuracy in tests on a scaled vehicle. Experiments show that it is possible to learn a tire model without prior knowledge with only 30 seconds of driving data and 3 seconds of training time. This method demonstrates greater one-step prediction accuracy than the baseline nonlinear least squares (NLS) method under noisy conditions, achieving a 3.3x lower root mean square error (RMSE), and yields tire models with comparable accuracy to traditional steady-state system identification. Furthermore, unlike steady-state methods requiring large spaces and specific experimental setups, the proposed approach identifies tire parameters directly on a race track in dynamic racing environments.
Abstract:With the release of open source datasets such as nuPlan and Argoverse, the research around learning-based planners has spread a lot in the last years. Existing systems have shown excellent capabilities in imitating the human driver behaviour, but they struggle to guarantee safe closed-loop driving. Conversely, optimization-based planners offer greater security in short-term planning scenarios. To confront this challenge, in this paper we propose a novel hybrid motion planner that integrates both learning-based and optimization-based techniques. Initially, a multilayer perceptron (MLP) generates a human-like trajectory, which is then refined by an optimization-based component. This component not only minimizes tracking errors but also computes a trajectory that is both kinematically feasible and collision-free with obstacles and road boundaries. Our model effectively balances safety and human-likeness, mitigating the trade-off inherent in these objectives. We validate our approach through simulation experiments and further demonstrate its efficacy by deploying it in real-world self-driving vehicles.
Abstract:A fundamental prerequisite for safe and efficient navigation of mobile robots is the availability of reliable navigation maps upon which trajectories can be planned. With the increasing industrial interest in mobile robotics, especially in urban environments, the process of generating navigation maps has become of particular interest, being a labor intensive step of the deployment process. Automating this step is challenging and becomes even more arduous when the perception capabilities are limited by cost considerations. This paper proposes an algorithm to automatically generate navigation maps using a typical navigation-oriented sensor setup: a single top-mounted 3D LiDAR sensor. The proposed method is designed and validated with the urban environment as the main use case: it is shown to be able to produce accurate maps featuring different terrain types, positive obstacles of different heights as well as negative obstacles. The algorithm is applied to data collected in a typical urban environment with a wheeled inverted pendulum robot, showing its robustness against localization, perception and dynamic uncertainties. The generated map is validated against a human-made map.
Abstract:Despite the number of works published in recent years, vehicle localization remains an open, challenging problem. While map-based localization and SLAM algorithms are getting better and better, they remain a single point of failure in typical localization pipelines. This paper proposes a modular localization architecture that fuses sensor measurements with the outputs of off-the-shelf localization algorithms. The fusion filter estimates model uncertainties to improve odometry in case absolute pose measurements are lost entirely. The architecture is validated experimentally on a real robot navigating autonomously proving a reduction of the position error of more than 90% with respect to the odometrical estimate without uncertainty estimation in a two-minute navigation period without position measurements.
Abstract:This paper presents a novel multi-modal Multi-Object Tracking (MOT) algorithm for self-driving cars that combines camera and LiDAR data. Camera frames are processed with a state-of-the-art 3D object detector, whereas classical clustering techniques are used to process LiDAR observations. The proposed MOT algorithm comprises a three-step association process, an Extended Kalman filter for estimating the motion of each detected dynamic obstacle, and a track management phase. The EKF motion model requires the current measured relative position and orientation of the observed object and the longitudinal and angular velocities of the ego vehicle as inputs. Unlike most state-of-the-art multi-modal MOT approaches, the proposed algorithm does not rely on maps or knowledge of the ego global pose. Moreover, it uses a 3D detector exclusively for cameras and is agnostic to the type of LiDAR sensor used. The algorithm is validated both in simulation and with real-world data, with satisfactory results.