Abstract:Time-resolved single photon imaging is a promising imaging modality characterized by the unique capability of timestamping the arrivals of single photons. Single-Photon Avalanche Diodes (SPADs) are the leading technology for implementing modern time-resolved pixels, suitable for passive imaging with asynchronous readout. However, they are currently limited to small sized arrays, thus there is a lack of datasets for passive time-resolved SPAD imaging, which in turn hinders research on this peculiar imaging data. In this paper we describe a realistic simulation process for SPAD imaging, which takes into account both the stochastic nature of photon arrivals and all the noise sources involved in the acquisition process of time-resolved SPAD arrays. We have implemented this simulator in a software prototype able to generate arbitrary-sized time-resolved SPAD arrays operating in passive mode. Starting from a reference image, our simulator generates a realistic stream of timestamped photon detections. We use our simulator to generate a time-resolved version of MNIST, which we make publicly available. Our dataset has the purpose of encouraging novel research directions in time-resolved SPAD imaging, as well as investigating the performance of CNN classifiers in extremely low-light conditions.
Abstract:We present Kernel-QuantTree Exponentially Weighted Moving Average (KQT-EWMA), a non-parametric change-detection algorithm that combines the Kernel-QuantTree (KQT) histogram and the EWMA statistic to monitor multivariate data streams online. The resulting monitoring scheme is very flexible, since histograms can be used to model any stationary distribution, and practical, since the distribution of test statistics does not depend on the distribution of datastream in stationary conditions (non-parametric monitoring). KQT-EWMA enables controlling false alarms by operating at a pre-determined Average Run Length ($ARL_0$), which measures the expected number of stationary samples to be monitored before triggering a false alarm. The latter peculiarity is in contrast with most non-parametric change-detection tests, which rarely can control the $ARL_0$ a priori. Our experiments on synthetic and real-world datasets demonstrate that KQT-EWMA can control $ARL_0$ while achieving detection delays comparable to or lower than state-of-the-art methods designed to work in the same conditions.
Abstract:The seismocardiographic signal is a promising alternative to the traditional ECG in the analysis of the cardiac activity. In particular, the systolic complex is known to be the most informative part of the seismocardiogram, thus requiring further analysis. State-of-art solutions to detect the systolic complex are based on Deep Learning models, which have been proven effective in pioneering studies. However, these solutions have only been tested in a controlled scenario considering only clean signals acquired from users maintained still in supine position. On top of that, all these studies consider data coming from a single dataset, ignoring the benefits and challenges related to a cross-dataset scenario. In this work, a cross-dataset experimental analysis was performed considering also data from a real-world scenario. Our findings prove the effectiveness of a deep learning solution, while showing the importance of a personalization step to contrast the domain shift, namely a change in data distribution between training and testing data. Finally, we demonstrate the benefits of a multi-channels approach, leveraging the information extracted from both accelerometers and gyroscopes data.
Abstract:Zero-shot anomaly detection (ZSAD) targets the identification of anomalies within images from arbitrary novel categories. This study introduces AdaCLIP for the ZSAD task, leveraging a pre-trained vision-language model (VLM), CLIP. AdaCLIP incorporates learnable prompts into CLIP and optimizes them through training on auxiliary annotated anomaly detection data. Two types of learnable prompts are proposed: static and dynamic. Static prompts are shared across all images, serving to preliminarily adapt CLIP for ZSAD. In contrast, dynamic prompts are generated for each test image, providing CLIP with dynamic adaptation capabilities. The combination of static and dynamic prompts is referred to as hybrid prompts, and yields enhanced ZSAD performance. Extensive experiments conducted across 14 real-world anomaly detection datasets from industrial and medical domains indicate that AdaCLIP outperforms other ZSAD methods and can generalize better to different categories and even domains. Finally, our analysis highlights the importance of diverse auxiliary data and optimized prompts for enhanced generalization capacity. Code is available at https://github.com/caoyunkang/AdaCLIP.
Abstract:In this paper, we propose a method that, given a partial grid map of an indoor environment built by an autonomous mobile robot, estimates the amount of the explored area represented in the map, as well as whether the uncovered part is still worth being explored or not. Our method is based on a deep convolutional neural network trained on data from partially explored environments with annotations derived from the knowledge of the entire map (which is not available when the network is used for inference). We show how such a network can be used to define a stopping criterion to terminate the exploration process when it is no longer adding relevant details about the environment to the map, saving, on average, 40% of the total exploration time with respect to covering all the area of the environment.
Abstract:Deep Learning (DL) models have been successfully applied to many applications including biomedical cell segmentation and classification in histological images. These models require large amounts of annotated data which might not always be available, especially in the medical field where annotations are scarce and expensive. To overcome this limitation, we propose a novel pipeline for generating synthetic datasets for cell segmentation. Given only a handful of annotated images, our method generates a large dataset of images which can be used to effectively train DL instance segmentation models. Our solution is designed to generate cells of realistic shapes and placement by allowing experts to incorporate domain knowledge during the generation of the dataset.
Abstract:For more than a decade, deep learning models have been dominating in various 2D imaging tasks. Their application is now extending to 3D imaging, with 3D Convolutional Neural Networks (3D CNNs) being able to process LIDAR, MRI, and CT scans, with significant implications for fields such as autonomous driving and medical imaging. In these critical settings, explaining the model's decisions is fundamental. Despite recent advances in Explainable Artificial Intelligence, however, little effort has been devoted to explaining 3D CNNs, and many works explain these models via inadequate extensions of 2D saliency methods. One fundamental limitation to the development of 3D saliency methods is the lack of a benchmark to quantitatively assess them on 3D data. To address this issue, we propose SE3D: a framework for Saliency method Evaluation in 3D imaging. We propose modifications to ShapeNet, ScanNet, and BraTS datasets, and evaluation metrics to assess saliency methods for 3D CNNs. We evaluate both state-of-the-art saliency methods designed for 3D data and extensions of popular 2D saliency methods to 3D. Our experiments show that 3D saliency methods do not provide explanations of sufficient quality, and that there is margin for future improvements and safer applications of 3D CNNs in critical fields.
Abstract:Advances in multi-modal embeddings, and in particular CLIP, have recently driven several breakthroughs in Computer Vision (CV). CLIP has shown impressive performance on a variety of tasks, yet, its inherently opaque architecture may hinder the application of models employing CLIP as backbone, especially in fields where trust and model explainability are imperative, such as in the medical domain. Current explanation methodologies for CV models rely on Saliency Maps computed through gradient analysis or input perturbation. However, these Saliency Maps can only be computed to explain classes relevant to the end task, often smaller in scope than the backbone training classes. In the context of models implementing CLIP as their vision backbone, a substantial portion of the information embedded within the learned representations is thus left unexplained. In this work, we propose Concept Visualization (ConVis), a novel saliency methodology that explains the CLIP embedding of an image by exploiting the multi-modal nature of the embeddings. ConVis makes use of lexical information from WordNet to compute task-agnostic Saliency Maps for any concept, not limited to concepts the end model was trained on. We validate our use of WordNet via an out of distribution detection experiment, and test ConVis on an object localization benchmark, showing that Concept Visualizations correctly identify and localize the image's semantic content. Additionally, we perform a user study demonstrating that our methodology can give users insight on the model's functioning.
Abstract:Multi-modal Large Language Models (MLLMs) have demonstrated remarkable capabilities in understanding and generating content across various modalities, such as images and text. However, their interpretability remains a challenge, hindering their adoption in critical applications. This research proposes a novel approach to enhance the interpretability of MLLMs by focusing on the image embedding component. We combine an open-world localization model with a MLLM, thus creating a new architecture able to simultaneously produce text and object localization outputs from the same vision embedding. The proposed architecture greatly promotes interpretability, enabling us to design a novel saliency map to explain any output token, to identify model hallucinations, and to assess model biases through semantic adversarial perturbations.
Abstract:Shape matching is a fundamental problem in computer graphics with many applications. Functional maps translate the point-wise shape-matching problem into its functional counterpart and have inspired numerous solutions over the last decade. Nearly all the solutions based on functional maps rely on the eigenfunctions of the Laplace-Beltrami Operator (LB) to describe the functional spaces defined on the surfaces and then convert the functional correspondences into point-wise correspondences. However, this final step is often error-prone and inaccurate in tiny regions and protrusions, where the energy of LB does not uniformly cover the surface. We propose a new functional basis Principal Components of a Dictionary (PCD) to address such intrinsic limitation. PCD constructs an orthonormal basis from the Principal Component Analysis (PCA) of a dictionary of functions defined over the shape. These dictionaries can target specific properties of the final basis, such as achieving an even spreading of energy. Our experimental evaluation compares seven different dictionaries on established benchmarks, showing that PCD is suited to target different shape-matching scenarios, resulting in more accurate point-wise maps than the LB basis when used in the same pipeline. This evidence provides a promising alternative for improving correspondence estimation, confirming the power and flexibility of functional maps.