Abstract:We present a symmetry adapted residual neural network (SAResNet) diabatization method to construct quasi-diabatic Hamiltonians that accurately represent ab initio adiabatic energies, energy gradients, and nonadiabatic couplings for moderate sized systems. Our symmetry adapted neural network inherits from the pioneering symmetry adapted polynomial and fundamental invariant neural network diabatization methods to exploit the power of neural network along with the transparent symmetry adaptation of polynomial for both symmetric and asymmetric irreducible representations. In addition, our symmetry adaptation provides a unified framework for symmetry adapted polynomial and symmetry adapted neural network, enabling the adoption of the residual neural network architecture, which is a powerful descendant of the pioneering feedforward neural network. Our SAResNet is applied to construct the full 36-dimensional coupled diabatic potential energy surfaces for aniline N-H bond photodissociation, with 2,269 data points and 32,640 trainable parameters and 190 cm-1 root mean square deviation in energy. In addition to the experimentally observed {\pi}{\pi}* and {\pi}Rydberg/{\pi}{\sigma}* states, a higher state (HOMO - 1 {\pi} to Rydberg/{\sigma}* excitation) is found to introduce an induced geometric phase effect thus indirectly participate in the photodissociation process.
Abstract:Identifying the causal relations between interested variables plays a pivotal role in representation learning as it provides deep insights into the dataset. Identifiability, as the central theme of this approach, normally hinges on leveraging data from multiple distributions (intervention, distribution shift, time series, etc.). Despite the exciting development in this field, a practical but often overlooked problem is: what if those distribution shifts happen sequentially? In contrast, any intelligence possesses the capacity to abstract and refine learned knowledge sequentially -- lifelong learning. In this paper, with a particular focus on the nonlinear independent component analysis (ICA) framework, we move one step forward toward the question of enabling models to learn meaningful (identifiable) representations in a sequential manner, termed continual causal representation learning. We theoretically demonstrate that model identifiability progresses from a subspace level to a component-wise level as the number of distributions increases. Empirically, we show that our method achieves performance comparable to nonlinear ICA methods trained jointly on multiple offline distributions and, surprisingly, the incoming new distribution does not necessarily benefit the identification of all latent variables.
Abstract:Existing methods for multi-modal time series representation learning aim to disentangle the modality-shared and modality-specific latent variables. Although achieving notable performances on downstream tasks, they usually assume an orthogonal latent space. However, the modality-specific and modality-shared latent variables might be dependent on real-world scenarios. Therefore, we propose a general generation process, where the modality-shared and modality-specific latent variables are dependent, and further develop a \textbf{M}ulti-mod\textbf{A}l \textbf{TE}mporal Disentanglement (\textbf{MATE}) model. Specifically, our \textbf{MATE} model is built on a temporally variational inference architecture with the modality-shared and modality-specific prior networks for the disentanglement of latent variables. Furthermore, we establish identifiability results to show that the extracted representation is disentangled. More specifically, we first achieve the subspace identifiability for modality-shared and modality-specific latent variables by leveraging the pairing of multi-modal data. Then we establish the component-wise identifiability of modality-specific latent variables by employing sufficient changes of historical latent variables. Extensive experimental studies on multi-modal sensors, human activity recognition, and healthcare datasets show a general improvement in different downstream tasks, highlighting the effectiveness of our method in real-world scenarios.
Abstract:Temporally causal representation learning aims to identify the latent causal process from time series observations, but most methods require the assumption that the latent causal processes do not have instantaneous relations. Although some recent methods achieve identifiability in the instantaneous causality case, they require either interventions on the latent variables or grouping of the observations, which are in general difficult to obtain in real-world scenarios. To fill this gap, we propose an \textbf{ID}entification framework for instantane\textbf{O}us \textbf{L}atent dynamics (\textbf{IDOL}) by imposing a sparse influence constraint that the latent causal processes have sparse time-delayed and instantaneous relations. Specifically, we establish identifiability results of the latent causal process based on sufficient variability and the sparse influence constraint by employing contextual information of time series data. Based on these theories, we incorporate a temporally variational inference architecture to estimate the latent variables and a gradient-based sparsity regularization to identify the latent causal process. Experimental results on simulation datasets illustrate that our method can identify the latent causal process. Furthermore, evaluations on multiple human motion forecasting benchmarks with instantaneous dependencies indicate the effectiveness of our method in real-world settings.
Abstract:Segment Anything Models (SAM) have made significant advancements in image segmentation, allowing users to segment target portions of an image with a single click (i.e., user prompt). Given its broad applications, the robustness of SAM against adversarial attacks is a critical concern. While recent works have explored adversarial attacks against a pre-defined prompt/click, their threat model is not yet realistic: (1) they often assume the user-click position is known to the attacker (point-based attack), and (2) they often operate under a white-box setting with limited transferability. In this paper, we propose a more practical region-level attack where attackers do not need to know the precise user prompt. The attack remains effective as the user clicks on any point on the target object in the image, hiding the object from SAM. Also, by adapting a spectrum transformation method, we make the attack more transferable under a black-box setting. Both control experiments and testing against real-world SAM services confirm its effectiveness.
Abstract:Dataset distillation (DD) allows datasets to be distilled to fractions of their original size while preserving the rich distributional information so that models trained on the distilled datasets can achieve a comparable accuracy while saving significant computational loads. Recent research in this area has been focusing on improving the accuracy of models trained on distilled datasets. In this paper, we aim to explore a new perspective of DD. We study how to embed adversarial robustness in distilled datasets, so that models trained on these datasets maintain the high accuracy and meanwhile acquire better adversarial robustness. We propose a new method that achieves this goal by incorporating curvature regularization into the distillation process with much less computational overhead than standard adversarial training. Extensive empirical experiments suggest that our method not only outperforms standard adversarial training on both accuracy and robustness with less computation overhead but is also capable of generating robust distilled datasets that can withstand various adversarial attacks.
Abstract:Temporal distribution shifts are ubiquitous in time series data. One of the most popular methods assumes that the temporal distribution shift occurs uniformly to disentangle the stationary and nonstationary dependencies. But this assumption is difficult to meet, as we do not know when the distribution shifts occur. To solve this problem, we propose to learn IDentifiable latEnt stAtes (IDEA) to detect when the distribution shifts occur. Beyond that, we further disentangle the stationary and nonstationary latent states via sufficient observation assumption to learn how the latent states change. Specifically, we formalize the causal process with environment-irrelated stationary and environment-related nonstationary variables. Under mild conditions, we show that latent environments and stationary/nonstationary variables are identifiable. Based on these theories, we devise the IDEA model, which incorporates an autoregressive hidden Markov model to estimate latent environments and modular prior networks to identify latent states. The IDEA model outperforms several latest nonstationary forecasting methods on various benchmark datasets, highlighting its advantages in real-world scenarios.
Abstract:Computational experiments have emerged as a valuable method for studying complex systems, involving the algorithmization of counterfactuals. However, accurately representing real social systems in Agent-based Modeling (ABM) is challenging due to the diverse and intricate characteristics of humans, including bounded rationality and heterogeneity. To address this limitation, the integration of Large Language Models (LLMs) has been proposed, enabling agents to possess anthropomorphic abilities such as complex reasoning and autonomous learning. These agents, known as LLM-based Agent, offer the potential to enhance the anthropomorphism lacking in ABM. Nonetheless, the absence of explicit explainability in LLMs significantly hinders their application in the social sciences. Conversely, computational experiments excel in providing causal analysis of individual behaviors and complex phenomena. Thus, combining computational experiments with LLM-based Agent holds substantial research potential. This paper aims to present a comprehensive exploration of this fusion. Primarily, it outlines the historical development of agent structures and their evolution into artificial societies, emphasizing their importance in computational experiments. Then it elucidates the advantages that computational experiments and LLM-based Agents offer each other, considering the perspectives of LLM-based Agent for computational experiments and vice versa. Finally, this paper addresses the challenges and future trends in this research domain, offering guidance for subsequent related studies.
Abstract:Identifying the underlying time-delayed latent causal processes in sequential data is vital for grasping temporal dynamics and making downstream reasoning. While some recent methods can robustly identify these latent causal variables, they rely on strict assumptions about the invertible generation process from latent variables to observed data. However, these assumptions are often hard to satisfy in real-world applications containing information loss. For instance, the visual perception process translates a 3D space into 2D images, or the phenomenon of persistence of vision incorporates historical data into current perceptions. To address this challenge, we establish an identifiability theory that allows for the recovery of independent latent components even when they come from a nonlinear and non-invertible mix. Using this theory as a foundation, we propose a principled approach, CaRiNG, to learn the CAusal RepresentatIon of Non-invertible Generative temporal data with identifiability guarantees. Specifically, we utilize temporal context to recover lost latent information and apply the conditions in our theory to guide the training process. Through experiments conducted on synthetic datasets, we validate that our CaRiNG method reliably identifies the causal process, even when the generation process is non-invertible. Moreover, we demonstrate that our approach considerably improves temporal understanding and reasoning in practical applications.
Abstract:Open World Object Detection (OWOD), simulating the real dynamic world where knowledge grows continuously, attempts to detect both known and unknown classes and incrementally learn the identified unknown ones. We find that although the only previous OWOD work constructively puts forward to the OWOD definition, the experimental settings are unreasonable with the illogical benchmark, confusing metric calculation, and inappropriate method. In this paper, we rethink the OWOD experimental setting and propose five fundamental benchmark principles to guide the OWOD benchmark construction. Moreover, we design two fair evaluation protocols specific to the OWOD problem, filling the void of evaluating from the perspective of unknown classes. Furthermore, we introduce a novel and effective OWOD framework containing an auxiliary Proposal ADvisor (PAD) and a Class-specific Expelling Classifier (CEC). The non-parametric PAD could assist the RPN in identifying accurate unknown proposals without supervision, while CEC calibrates the over-confident activation boundary and filters out confusing predictions through a class-specific expelling function. Comprehensive experiments conducted on our fair benchmark demonstrate that our method outperforms other state-of-the-art object detection approaches in terms of both existing and our new metrics. Our benchmark and code are available at https://github.com/RE-OWOD/RE-OWOD.