Abstract:Current methods for time series forecasting struggle in the online scenario, since it is difficult to preserve long-term dependency while adapting short-term changes when data are arriving sequentially. Although some recent methods solve this problem by controlling the updates of latent states, they cannot disentangle the long/short-term states, leading to the inability to effectively adapt to nonstationary. To tackle this challenge, we propose a general framework to disentangle long/short-term states for online time series forecasting. Our idea is inspired by the observations where short-term changes can be led by unknown interventions like abrupt policies in the stock market. Based on this insight, we formalize a data generation process with unknown interventions on short-term states. Under mild assumptions, we further leverage the independence of short-term states led by unknown interventions to establish the identification theory to achieve the disentanglement of long/short-term states. Built on this theory, we develop a long short-term disentanglement model (LSTD) to extract the long/short-term states with long/short-term encoders, respectively. Furthermore, the LSTD model incorporates a smooth constraint to preserve the long-term dependencies and an interrupted dependency constraint to enforce the forgetting of short-term dependencies, together boosting the disentanglement of long/short-term states. Experimental results on several benchmark datasets show that our \textbf{LSTD} model outperforms existing methods for online time series forecasting, validating its efficacy in real-world applications.
Abstract:Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling independent control over motion and identity. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
Abstract:Facial Expression Recognition has a wide application prospect in social robotics, health care, driver fatigue monitoring, and many other practical scenarios. Automatic recognition of facial expressions has been extensively studied by the Computer Vision research society. But Facial Expression Recognition in real-world is still a challenging task, partially due to the long-tailed distribution of the dataset. Many recent studies use data augmentation for Long-Tailed Recognition tasks. In this paper, we propose a novel semantic augmentation method. By introducing randomness into the encoding of the source data in the latent space of VAE-GAN, new samples are generated. Then, for facial expression recognition in RAF-DB dataset, we use our augmentation method to balance the long-tailed distribution. Our method can be used in not only FER tasks, but also more diverse data-hungry scenarios.
Abstract:Prevalent in biological applications (e.g., human phenotype measurements), multimodal datasets can provide valuable insights into the underlying biological mechanisms. However, current machine learning models designed to analyze such datasets still lack interpretability and theoretical guarantees, which are essential to biological applications. Recent advances in causal representation learning have shown promise in uncovering the interpretable latent causal variables with formal theoretical certificates. Unfortunately, existing works for multimodal distributions either rely on restrictive parametric assumptions or provide rather coarse identification results, limiting their applicability to biological research which favors a detailed understanding of the mechanisms. In this work, we aim to develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biological datasets. Theoretically, we consider a flexible nonparametric latent distribution (c.f., parametric assumptions in prior work) permitting causal relationships across potentially different modalities. We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work. Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities, which, as we will discuss, is natural for a large collection of biological systems. Empirically, we propose a practical framework to instantiate our theoretical insights. We demonstrate the effectiveness of our approach through extensive experiments on both numerical and synthetic datasets. Results on a real-world human phenotype dataset are consistent with established medical research, validating our theoretical and methodological framework.
Abstract:Wireless networks are increasingly facing challenges due to their expanding scale and complexity. These challenges underscore the need for advanced AI-driven strategies, particularly in the upcoming 6G networks. In this article, we introduce WirelessAgent, a novel approach leveraging large language models (LLMs) to develop AI agents capable of managing complex tasks in wireless networks. It can effectively improve network performance through advanced reasoning, multimodal data processing, and autonomous decision making. Thereafter, we demonstrate the practical applicability and benefits of WirelessAgent for network slicing management. The experimental results show that WirelessAgent is capable of accurately understanding user intent, effectively allocating slice resources, and consistently maintaining optimal performance.
Abstract:Causal Temporal Representation Learning (Ctrl) methods aim to identify the temporal causal dynamics of complex nonstationary temporal sequences. Despite the success of existing Ctrl methods, they require either directly observing the domain variables or assuming a Markov prior on them. Such requirements limit the application of these methods in real-world scenarios when we do not have such prior knowledge of the domain variables. To address this problem, this work adopts a sparse transition assumption, aligned with intuitive human understanding, and presents identifiability results from a theoretical perspective. In particular, we explore under what conditions on the significance of the variability of the transitions we can build a model to identify the distribution shifts. Based on the theoretical result, we introduce a novel framework, Causal Temporal Representation Learning with Nonstationary Sparse Transition (CtrlNS), designed to leverage the constraints on transition sparsity and conditional independence to reliably identify both distribution shifts and latent factors. Our experimental evaluations on synthetic and real-world datasets demonstrate significant improvements over existing baselines, highlighting the effectiveness of our approach.
Abstract:The ionic bonding across the lattice and ordered microscopic structures endow crystals with unique symmetry and determine their macroscopic properties. Unconventional crystals, in particular, exhibit non-traditional lattice structures or possess exotic physical properties, making them intriguing subjects for investigation. Therefore, to accurately predict the physical and chemical properties of crystals, it is crucial to consider long-range orders. While GNN excels at capturing the local environment of atoms in crystals, they often face challenges in effectively capturing longer-ranged interactions due to their limited depth. In this paper, we propose CrysToGraph ($\textbf{Crys}$tals with $\textbf{T}$ransformers $\textbf{o}$n $\textbf{Graph}$s), a novel transformer-based geometric graph network designed specifically for unconventional crystalline systems, and UnconvBench, a comprehensive benchmark to evaluate models' predictive performance on unconventional crystal materials such as defected crystals, low-dimension crystals and MOF. CrysToGraph effectively captures short-range interactions with transformer-based graph convolution blocks as well as long-range interactions with graph-wise transformer blocks. CrysToGraph proofs its effectiveness in modelling unconventional crystal materials in multiple tasks, and moreover, it outperforms most existing methods, achieving new state-of-the-art results on the benchmarks of both unconventional crystals and traditional crystals.
Abstract:Graph Out-of-Distribution (OOD), requiring that models trained on biased data generalize to the unseen test data, has considerable real-world applications. One of the most mainstream methods is to extract the invariant subgraph by aligning the original and augmented data with the help of environment augmentation. However, these solutions might lead to the loss or redundancy of semantic subgraphs and result in suboptimal generalization. To address this challenge, we propose exploiting Probability of Necessity and Sufficiency (PNS) to extract sufficient and necessary invariant substructures. Beyond that, we further leverage the domain variant subgraphs related to the labels to boost the generalization performance in an ensemble manner. Specifically, we first consider the data generation process for graph data. Under mild conditions, we show that the sufficient and necessary invariant subgraph can be extracted by minimizing an upper bound, built on the theoretical advance of the probability of necessity and sufficiency. To further bridge the theory and algorithm, we devise the model called Sufficiency and Necessity Inspired Graph Learning (SNIGL), which ensembles an invariant subgraph classifier on top of latent sufficient and necessary invariant subgraphs, and a domain variant subgraph classifier specific to the test domain for generalization enhancement. Experimental results demonstrate that our SNIGL model outperforms the state-of-the-art techniques on six public benchmarks, highlighting its effectiveness in real-world scenarios.
Abstract:Non-autoregressive (NAR) automatic speech recognition (ASR) models predict tokens independently and simultaneously, bringing high inference speed. However, there is still a gap in the accuracy of the NAR models compared to the autoregressive (AR) models. To further narrow the gap between the NAR and AR models, we propose a single-step NAR ASR architecture with high accuracy and inference speed, called EfficientASR. It uses an Index Mapping Vector (IMV) based alignment generator to generate alignments during training, and an alignment predictor to learn the alignments for inference. It can be trained end-to-end (E2E) with cross-entropy loss combined with alignment loss. The proposed EfficientASR achieves competitive results on the AISHELL-1 and AISHELL-2 benchmarks compared to the state-of-the-art (SOTA) models. Specifically, it achieves character error rates (CER) of 4.26%/4.62% on the AISHELL-1 dev/test dataset, which outperforms the SOTA AR Conformer with about 30x inference speedup.
Abstract:Unobserved discrete data are ubiquitous in many scientific disciplines, and how to learn the causal structure of these latent variables is crucial for uncovering data patterns. Most studies focus on the linear latent variable model or impose strict constraints on latent structures, which fail to address cases in discrete data involving non-linear relationships or complex latent structures. To achieve this, we explore a tensor rank condition on contingency tables for an observed variable set $\mathbf{X}_p$, showing that the rank is determined by the minimum support of a specific conditional set (not necessary in $\mathbf{X}_p$) that d-separates all variables in $\mathbf{X}_p$. By this, one can locate the latent variable through probing the rank on different observed variables set, and further identify the latent causal structure under some structure assumptions. We present the corresponding identification algorithm and conduct simulated experiments to verify the effectiveness of our method. In general, our results elegantly extend the identification boundary for causal discovery with discrete latent variables and expand the application scope of causal discovery with latent variables.