Abstract:Automatic Radiology Report Generation (RRG) is an important topic for alleviating the substantial workload of radiologists. Existing RRG approaches rely on supervised regression based on different architectures or additional knowledge injection,while the generated report may not align optimally with radiologists' preferences. Especially, since the preferences of radiologists are inherently heterogeneous and multidimensional, e.g., some may prioritize report fluency, while others emphasize clinical accuracy. To address this problem,we propose a new RRG method via Multi-objective Preference Optimization (MPO) to align the pre-trained RRG model with multiple human preferences, which can be formulated by multi-dimensional reward functions and optimized by multi-objective reinforcement learning (RL). Specifically, we use a preference vector to represent the weight of preferences and use it as a condition for the RRG model. Then, a linearly weighed reward is obtained via a dot product between the preference vector and multi-dimensional reward.Next,the RRG model is optimized to align with the preference vector by optimizing such a reward via RL. In the training stage,we randomly sample diverse preference vectors from the preference space and align the model by optimizing the weighted multi-objective rewards, which leads to an optimal policy on the entire preference space. When inference,our model can generate reports aligned with specific preferences without further fine-tuning. Extensive experiments on two public datasets show the proposed method can generate reports that cater to different preferences in a single model and achieve state-of-the-art performance.
Abstract:Unsupervised Reinforcement Learning (RL) provides a promising paradigm for learning useful behaviors via reward-free per-training. Existing methods for unsupervised RL mainly conduct empowerment-driven skill discovery or entropy-based exploration. However, empowerment often leads to static skills, and pure exploration only maximizes the state coverage rather than learning useful behaviors. In this paper, we propose a novel unsupervised RL framework via an ensemble of skills, where each skill performs partition exploration based on the state prototypes. Thus, each skill can explore the clustered area locally, and the ensemble skills maximize the overall state coverage. We adopt state-distribution constraints for the skill occupancy and the desired cluster for learning distinguishable skills. Theoretical analysis is provided for the state entropy and the resulting skill distributions. Based on extensive experiments on several challenging tasks, we find our method learns well-explored ensemble skills and achieves superior performance in various downstream tasks compared to previous methods.
Abstract:Few-shot image generation, which aims to produce plausible and diverse images for one category given a few images from this category, has drawn extensive attention. Existing approaches either globally interpolate different images or fuse local representations with pre-defined coefficients. However, such an intuitive combination of images/features only exploits the most relevant information for generation, leading to poor diversity and coarse-grained semantic fusion. To remedy this, this paper proposes a novel textural modulation (TexMod) mechanism to inject external semantic signals into internal local representations. Parameterized by the feedback from the discriminator, our TexMod enables more fined-grained semantic injection while maintaining the synthesis fidelity. Moreover, a global structural discriminator (StructD) is developed to explicitly guide the model to generate images with reasonable layout and outline. Furthermore, the frequency awareness of the model is reinforced by encouraging the model to distinguish frequency signals. Together with these techniques, we build a novel and effective model for few-shot image generation. The effectiveness of our model is identified by extensive experiments on three popular datasets and various settings. Besides achieving state-of-the-art synthesis performance on these datasets, our proposed techniques could be seamlessly integrated into existing models for a further performance boost.
Abstract:Building predictive models for companies often relies on inference using historical data of companies in the same industry sector. However, companies are similar across a variety of dimensions that should be leveraged in relevant prediction problems. This is particularly true for large, complex organizations which may not be well defined by a single industry and have no clear peers. To enable prediction using company information across a variety of dimensions, we create an embedding of company stocks, Stock2Vec, which can be easily added to any prediction model that applies to companies with associated stock prices. We describe the process of creating this rich vector representation from stock price fluctuations, and characterize what the dimensions represent. We then conduct comprehensive experiments to evaluate this embedding in applied machine learning problems in various business contexts. Our experiment results demonstrate that the four features in the Stock2Vec embedding can readily augment existing cross-company models and enhance cross-company predictions.
Abstract:Previous transfer methods for anomaly detection generally assume the availability of labeled data in source or target domains. However, such an assumption is not valid in most real applications where large-scale labeled data are too expensive. Therefore, this paper proposes an importance weighted adversarial autoencoder-based method to transfer anomaly detection knowledge in an unsupervised manner, particularly for a rarely studied scenario where a target domain has no labeled normal/abnormal data while only normal data from a related source domain exist. Specifically, the method learns to align the distributions of normal data in both source and target domains, but leave the distribution of abnormal data in the target domain unchanged. In this way, an obvious gap can be produced between the distributions of normal and abnormal data in the target domain, therefore enabling the anomaly detection in the domain. Extensive experiments on multiple synthetic datasets and the UCSD benchmark demonstrate the effectiveness of our approach.