LAAS-SARA
Abstract:Object removal has so far been dominated by the mask-and-inpaint paradigm, where the masked region is excluded from the input, leaving models relying on unmasked areas to inpaint the missing region. However, this approach lacks contextual information for the masked area, often resulting in unstable performance. In this work, we introduce SmartEraser, built with a new removing paradigm called Masked-Region Guidance. This paradigm retains the masked region in the input, using it as guidance for the removal process. It offers several distinct advantages: (a) it guides the model to accurately identify the object to be removed, preventing its regeneration in the output; (b) since the user mask often extends beyond the object itself, it aids in preserving the surrounding context in the final result. Leveraging this new paradigm, we present Syn4Removal, a large-scale object removal dataset, where instance segmentation data is used to copy and paste objects onto images as removal targets, with the original images serving as ground truths. Experimental results demonstrate that SmartEraser significantly outperforms existing methods, achieving superior performance in object removal, especially in complex scenes with intricate compositions.
Abstract:Automatic Radiology Report Generation (RRG) is an important topic for alleviating the substantial workload of radiologists. Existing RRG approaches rely on supervised regression based on different architectures or additional knowledge injection,while the generated report may not align optimally with radiologists' preferences. Especially, since the preferences of radiologists are inherently heterogeneous and multidimensional, e.g., some may prioritize report fluency, while others emphasize clinical accuracy. To address this problem,we propose a new RRG method via Multi-objective Preference Optimization (MPO) to align the pre-trained RRG model with multiple human preferences, which can be formulated by multi-dimensional reward functions and optimized by multi-objective reinforcement learning (RL). Specifically, we use a preference vector to represent the weight of preferences and use it as a condition for the RRG model. Then, a linearly weighed reward is obtained via a dot product between the preference vector and multi-dimensional reward.Next,the RRG model is optimized to align with the preference vector by optimizing such a reward via RL. In the training stage,we randomly sample diverse preference vectors from the preference space and align the model by optimizing the weighted multi-objective rewards, which leads to an optimal policy on the entire preference space. When inference,our model can generate reports aligned with specific preferences without further fine-tuning. Extensive experiments on two public datasets show the proposed method can generate reports that cater to different preferences in a single model and achieve state-of-the-art performance.
Abstract:Link prediction (LP) is crucial for Knowledge Graphs (KG) completion but commonly suffers from interpretability issues. While several methods have been proposed to explain embedding-based LP models, they are generally limited to local explanations on KG and are deficient in providing human interpretable semantics. Based on real-world observations of the characteristics of KGs from multiple domains, we propose to explain LP models in KG with path-based explanations. An integrated framework, namely eXpath, is introduced which incorporates the concept of relation path with ontological closed path rules to enhance both the efficiency and effectiveness of LP interpretation. Notably, the eXpath explanations can be fused with other single-link explanation approaches to achieve a better overall solution. Extensive experiments across benchmark datasets and LP models demonstrate that introducing eXpath can boost the quality of resulting explanations by about 20% on two key metrics and reduce the required explanation time by 61.4%, in comparison to the best existing method. Case studies further highlight eXpath's ability to provide more semantically meaningful explanations through path-based evidence.
Abstract:This article propose a whole-body impedance coordinative control framework for a wheel-legged humanoid robot to achieve adaptability on complex terrains while maintaining robot upper body stability. The framework contains a bi-level control strategy. The outer level is a variable damping impedance controller, which optimizes the damping parameters to ensure the stability of the upper body while holding an object. The inner level employs Whole-Body Control (WBC) optimization that integrates real-time terrain estimation based on wheel-foot position and force data. It generates motor torques while accounting for dynamic constraints, joint limits,friction cones, real-time terrain updates, and a model-free friction compensation strategy. The proposed whole-body coordinative control method has been tested on a recently developed quadruped humanoid robot. The results demonstrate that the proposed algorithm effectively controls the robot, maintaining upper body stability to successfully complete a water-carrying task while adapting to varying terrains.
Abstract:Neural operators have shown promise in solving many types of Partial Differential Equations (PDEs). They are significantly faster compared to traditional numerical solvers once they have been trained with a certain amount of observed data. However, their numerical performance in solving time-dependent PDEs, particularly in long-time prediction of dynamic systems, still needs improvement. In this paper, we focus on solving the long-time integration of nonlinear wave equations via neural operators by replacing the initial condition with the prediction in a recurrent manner. Given limited observed temporal trajectory data, we utilize some intrinsic features of these nonlinear wave equations, such as conservation laws and well-posedness, to improve the algorithm design and reduce accumulated error. Our numerical experiments examine these improvements in the Korteweg-de Vries (KdV) equation, the sine-Gordon equation, and a semilinear wave equation on the irregular domain.
Abstract:We introduce a novel diffusion-based spectral algorithm to tackle regression analysis on high-dimensional data, particularly data embedded within lower-dimensional manifolds. Traditional spectral algorithms often fall short in such contexts, primarily due to the reliance on predetermined kernel functions, which inadequately address the complex structures inherent in manifold-based data. By employing graph Laplacian approximation, our method uses the local estimation property of heat kernel, offering an adaptive, data-driven approach to overcome this obstacle. Another distinct advantage of our algorithm lies in its semi-supervised learning framework, enabling it to fully use the additional unlabeled data. This ability enhances the performance by allowing the algorithm to dig the spectrum and curvature of the data manifold, providing a more comprehensive understanding of the dataset. Moreover, our algorithm performs in an entirely data-driven manner, operating directly within the intrinsic manifold structure of the data, without requiring any predefined manifold information. We provide a convergence analysis of our algorithm. Our findings reveal that the algorithm achieves a convergence rate that depends solely on the intrinsic dimension of the underlying manifold, thereby avoiding the curse of dimensionality associated with the higher ambient dimension.
Abstract:By selecting different filter functions, spectral algorithms can generate various regularization methods to solve statistical inverse problems within the learning-from-samples framework. This paper combines distributed spectral algorithms with Sobolev kernels to tackle the functional linear regression problem. The design and mathematical analysis of the algorithms require only that the functional covariates are observed at discrete sample points. Furthermore, the hypothesis function spaces of the algorithms are the Sobolev spaces generated by the Sobolev kernels, optimizing both approximation capability and flexibility. Through the establishment of regularity conditions for the target function and functional covariate, we derive matching upper and lower bounds for the convergence of the distributed spectral algorithms in the Sobolev norm. This demonstrates that the proposed regularity conditions are reasonable and that the convergence analysis under these conditions is tight, capturing the essential characteristics of functional linear regression. The analytical techniques and estimates developed in this paper also enhance existing results in the previous literature.
Abstract:Inspired by the structure of spherical harmonics, we propose the truncated kernel stochastic gradient descent (T-kernel SGD) algorithm with a least-square loss function for spherical data fitting. T-kernel SGD employs a "truncation" operation, enabling the application of a series-based kernel function in stochastic gradient descent, thereby avoiding the difficulties of finding suitable closed-form kernel functions in high-dimensional spaces. In contrast to traditional kernel SGD, T-kernel SGD is more effective in balancing bias and variance by dynamically adjusting the hypothesis space during iterations. The most significant advantage of the proposed algorithm is that it can achieve theoretically optimal convergence rates using a constant step size (independent of the sample size) while overcoming the inherent saturation problem of kernel SGD. Additionally, we leverage the structure of spherical polynomials to derive an equivalent T-kernel SGD, significantly reducing storage and computational costs compared to kernel SGD. Typically, T-kernel SGD requires only $\mathcal{O}(n^{1+\frac{d}{d-1}\epsilon})$ computational complexity and $\mathcal{O}(n^{\frac{d}{d-1}\epsilon})$ storage to achieve optimal rates for the d-dimensional sphere, where $0<\epsilon<\frac{1}{2}$ can be arbitrarily small if the optimal fitting or the underlying space possesses sufficient regularity. This regularity is determined by the smoothness parameter of the objective function and the decaying rate of the eigenvalues of the integral operator associated with the kernel function, both of which reflect the difficulty of the estimation problem. Our main results quantitatively characterize how this prior information influences the convergence of T-kernel SGD. The numerical experiments further validate the theoretical findings presented in this paper.
Abstract:This article explores human-like movement from a fresh perspective on motion planning. We analyze the coordinated and compliant movement mechanisms of the human body from the perspective of biomechanics. Based on these mechanisms, we propose an optimal control framework that integrates compliant control dynamics, optimizing robotic arm motion through a response time matrix. This matrix sets the timing parameters for joint movements, turning the system into a time-parameterized optimal control problem. The model focuses on the interaction between active and passive joints under external disturbances, improving adaptability and compliance. This method achieves optimal trajectory generation and balances precision and compliance. Experimental results on both a manipulator and a humanoid robot validate the approach.
Abstract:This paper proposes a fair control framework for multi-robot systems, which integrates the newly introduced Alternative Authority Control (AAC) and Flexible Control Barrier Function (F-CBF). Control authority refers to a single robot which can plan its trajectory while considering others as moving obstacles, meaning the other robots do not have authority to plan their own paths. The AAC method dynamically distributes the control authority, enabling fair and coordinated movement across the system. This approach significantly improves computational efficiency, scalability, and robustness in complex environments. The proposed F-CBF extends traditional CBFs by incorporating obstacle shape, velocity, and orientation. F-CBF enhances safety by accurate dynamic obstacle avoidance. The framework is validated through simulations in multi-robot scenarios, demonstrating its safety, robustness and computational efficiency.