Abstract:Local causal discovery aims to learn and distinguish the direct causes and effects of a target variable from observed data. Existing constraint-based local causal discovery methods use AND or OR rules in constructing the local causal skeleton, but using either rule alone is prone to produce cascading errors in the learned local causal skeleton, and thus impacting the inference of local causal relationships. On the other hand, directly applying score-based global causal discovery methods to local causal discovery may randomly return incorrect results due to the existence of local equivalence classes. To address the above issues, we propose a Hybrid Local Causal Discovery algorithm, called HLCD. Specifically, HLCD initially utilizes a constraint-based approach combined with the OR rule to obtain a candidate skeleton and then employs a score-based method to eliminate redundant portions in the candidate skeleton. Furthermore, during the local causal orientation phase, HLCD distinguishes between V-structures and equivalence classes by comparing the local structure scores between the two, thereby avoiding orientation interference caused by local equivalence classes. We conducted extensive experiments with seven state-of-the-art competitors on 14 benchmark Bayesian network datasets, and the experimental results demonstrate that HLCD significantly outperforms existing local causal discovery algorithms.
Abstract:Model merging is a technique that combines multiple large pretrained models into a single model with enhanced performance and broader task adaptability. It has gained popularity in large pretrained model development due to its ability to bypass the need for original training data and further training processes. However, most existing model merging approaches focus solely on exploring the parameter space, merging models with identical architectures. Merging within the architecture space, despite its potential, remains in its early stages due to the vast search space and the challenges of layer compatibility. This paper marks a significant advance toward more flexible and comprehensive model merging techniques by modeling the architecture-space merging process as a reinforcement learning task. We train policy and value networks using offline sampling of weight vectors, which are then employed for the online optimization of merging strategies. Moreover, a multi-objective optimization paradigm is introduced to accommodate users' diverse task preferences, learning the Pareto front of optimal models to offer customized merging suggestions. Experimental results across multiple tasks, including text translation, mathematical reasoning, and code generation, validate the effectiveness and superiority of the proposed framework in model merging. The code will be made publicly available after the review process.
Abstract:Transferable neural architecture search (TNAS) has been introduced to design efficient neural architectures for multiple tasks, to enhance the practical applicability of NAS in real-world scenarios. In TNAS, architectural knowledge accumulated in previous search processes is reused to warm up the architecture search for new tasks. However, existing TNAS methods still search in an extensive search space, necessitating the evaluation of numerous architectures. To overcome this challenge, this work proposes a novel transfer paradigm, i.e., design principle transfer. In this work, the linguistic description of various structural components' effects on architectural performance is termed design principles. They are learned from established architectures and then can be reused to reduce the search space by discarding unpromising architectures. Searching in the refined search space can boost both the search performance and efficiency for new NAS tasks. To this end, a large language model (LLM)-assisted design principle transfer (LAPT) framework is devised. In LAPT, LLM is applied to automatically reason the design principles from a set of given architectures, and then a principle adaptation method is applied to refine these principles progressively based on the new search results. Experimental results show that LAPT can beat the state-of-the-art TNAS methods on most tasks and achieve comparable performance on others.
Abstract:Streaming feature selection techniques have become essential in processing real-time data streams, as they facilitate the identification of the most relevant attributes from continuously updating information. Despite their performance, current algorithms to streaming feature selection frequently fall short in managing biases and avoiding discrimination that could be perpetuated by sensitive attributes, potentially leading to unfair outcomes in the resulting models. To address this issue, we propose FairSFS, a novel algorithm for Fair Streaming Feature Selection, to uphold fairness in the feature selection process without compromising the ability to handle data in an online manner. FairSFS adapts to incoming feature vectors by dynamically adjusting the feature set and discerns the correlations between classification attributes and sensitive attributes from this revised set, thereby forestalling the propagation of sensitive data. Empirical evaluations show that FairSFS not only maintains accuracy that is on par with leading streaming feature selection methods and existing fair feature techniques but also significantly improves fairness metrics.
Abstract:Evolutionary multitasking (EMT) is an emerging approach for solving multitask optimization problems (MTOPs) and has garnered considerable research interest. The implicit EMT is a significant research branch that utilizes evolution operators to enable knowledge transfer (KT) between tasks. However, current approaches in implicit EMT face challenges in adaptability, due to the use of a limited number of evolution operators and insufficient utilization of evolutionary states for performing KT. This results in suboptimal exploitation of implicit KT's potential to tackle a variety of MTOPs. To overcome these limitations, we propose a novel Learning to Transfer (L2T) framework to automatically discover efficient KT policies for the MTOPs at hand. Our framework conceptualizes the KT process as a learning agent's sequence of strategic decisions within the EMT process. We propose an action formulation for deciding when and how to transfer, a state representation with informative features of evolution states, a reward formulation concerning convergence and transfer efficiency gain, and the environment for the agent to interact with MTOPs. We employ an actor-critic network structure for the agent and learn it via proximal policy optimization. This learned agent can be integrated with various evolutionary algorithms, enhancing their ability to address a range of new MTOPs. Comprehensive empirical studies on both synthetic and real-world MTOPs, encompassing diverse inter-task relationships, function classes, and task distributions are conducted to validate the proposed L2T framework. The results show a marked improvement in the adaptability and performance of implicit EMT when solving a wide spectrum of unseen MTOPs.
Abstract:In the field of algorithm selection research, the discussion surrounding algorithm features has been significantly overshadowed by the emphasis on problem features. Although a few empirical studies have yielded evidence regarding the effectiveness of algorithm features, the potential benefits of incorporating algorithm features into algorithm selection models and their suitability for different scenarios remain unclear. It is evident that relying solely on empirical research cannot adequately elucidate the mechanisms underlying performance variations. In this paper, we address this gap by proposing the first provable guarantee for algorithm selection based on algorithm features, taking a generalization perspective. We analyze the benefits and costs associated with algorithm features and investigate how the generalization error is affected by several factors. Specifically, we examine adaptive and predefined algorithm features under transductive and inductive learning paradigms, respectively, and derive upper bounds for the generalization error based on their model's Rademacher complexity. Our theoretical findings not only provide tight upper bounds, but also offer analytical insights into the impact of various factors, including model complexity, the number of problem instances and candidate algorithms, model parameters and feature values, and distributional differences between the training and test sets. Notably, we demonstrate that algorithm feature-based models outperform traditional models relying solely on problem features in complex multi-algorithm scenarios in terms of generalization, and are particularly well-suited for deployment in scenarios under distribution shifts, where the generalization error exhibits a positive correlation with the chi-square distance between training and test sets.
Abstract:Causality reveals fundamental principles behind data distributions in real-world scenarios, and the capability of large language models (LLMs) to understand causality directly impacts their efficacy across explaining outputs, adapting to new evidence, and generating counterfactuals. With the proliferation of LLMs, the evaluation of this capacity is increasingly garnering attention. However, the absence of a comprehensive benchmark has rendered existing evaluation studies being straightforward, undiversified, and homogeneous. To address these challenges, this paper proposes a comprehensive benchmark, namely CausalBench, to evaluate the causality understanding capabilities of LLMs. Originating from the causal research community, CausalBench encompasses three causal learning-related tasks, which facilitate a convenient comparison of LLMs' performance with classic causal learning algorithms. Meanwhile, causal networks of varying scales and densities are integrated in CausalBench, to explore the upper limits of LLMs' capabilities across task scenarios of varying difficulty. Notably, background knowledge and structured data are also incorporated into CausalBench to thoroughly unlock the underlying potential of LLMs for long-text comprehension and prior information utilization. Based on CausalBench, this paper evaluates nineteen leading LLMs and unveils insightful conclusions in diverse aspects. Firstly, we present the strengths and weaknesses of LLMs and quantitatively explore the upper limits of their capabilities across various scenarios. Meanwhile, we further discern the adaptability and abilities of LLMs to specific structural networks and complex chain of thought structures. Moreover, this paper quantitatively presents the differences across diverse information sources and uncovers the gap between LLMs' capabilities in causal understanding within textual contexts and numerical domains.
Abstract:Large language models (LLMs) have gained widespread popularity and demonstrated exceptional performance not only in natural language processing (NLP) tasks but also in non-linguistic domains. Their potential as artificial general intelligence extends beyond NLP, showcasing promising capabilities in diverse optimization scenarios. Despite this rising trend, whether the integration of LLMs into these black-box optimization problems is genuinely beneficial remains unexplored. This paper endeavors to tackle this issue by offering deeper insights into the potential of LLMs in optimization tasks through a comprehensive investigation. Our approach involves a comprehensive evaluation, covering both discrete and continuous optimization problems, aiming to assess the efficacy and distinctive characteristics that LLMs bring to the realm of optimization. Our findings reveal both the limitations and advantages of LLMs in optimization. On one hand, despite consuming the significant power required to run the model, LLMs exhibit subpar performance and lack desirable properties in pure numerical tasks, primarily due to a mismatch between the problem domain and their processing capabilities. On the other hand, although LLMs may not be ideal for traditional numerical optimization, their potential in broader optimization contexts remains promising. LLMs exhibit the ability to solve problems in non-numerical domains and can leverage heuristics from the prompt to enhance their performance. To the best of our knowledge, this work presents the first systematic evaluation of LLMs for numerical optimization, offering a progressive, wide-coverage, and behavioral analysis. Our findings pave the way for a deeper understanding of LLMs' role in optimization and guide future application in diverse scenarios for LLMs.
Abstract:Recently, large language models (LLMs) have notably positioned them as capable tools for addressing complex optimization challenges. Despite this recognition, a predominant limitation of existing LLM-based optimization methods is their struggle to capture the relationships among decision variables when relying exclusively on numerical text prompts, especially in high-dimensional problems. Keeping this in mind, we first propose to enhance the optimization performance using multimodal LLM capable of processing both textual and visual prompts for deeper insights of the processed optimization problem. This integration allows for a more comprehensive understanding of optimization problems, akin to human cognitive processes. We have developed a multimodal LLM-based optimization framework that simulates human problem-solving workflows, thereby offering a more nuanced and effective analysis. The efficacy of this method is evaluated through extensive empirical studies focused on a well-known combinatorial optimization problem, i.e., capacitated vehicle routing problem. The results are compared against those obtained from the LLM-based optimization algorithms that rely solely on textual prompts, demonstrating the significant advantages of our multimodal approach.
Abstract:Large Language Models (LLMs), built upon Transformer-based architectures with massive pretraining on diverse data, have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and Evolutionary Algorithms (EAs), despite differing in objectives and methodologies, reveals intriguing parallels, especially in their shared optimization nature, black-box characteristics, and proficiency in handling complex problems. Meanwhile, EA can not only provide an optimization framework for LLM's further enhancement under black-box settings but also empower LLM with flexible global search and iterative mechanism in applications. On the other hand, LLM's abundant domain knowledge enables EA to perform smarter searches, while its text processing capability assist in deploying EA across various tasks. Based on their complementary advantages, this paper presents a comprehensive review and forward-looking roadmap, categorizing their mutual inspiration into LLM-enhanced evolutionary optimization and EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the amalgamation of LLMs and EAs in various application scenarios, including neural architecture search, code generation, software engineering, and text generation. As the first comprehensive review specifically focused on the EA research in the era of LLMs, this paper provides a foundational stepping stone for understanding and harnessing the collaborative potential of LLMs and EAs. By presenting a comprehensive review, categorization, and critical analysis, we contribute to the ongoing discourse on the cross-disciplinary study of these two powerful paradigms. The identified challenges and future directions offer guidance to unlock the full potential of this innovative collaboration.