Abstract:Model merging is a technique that combines multiple large pretrained models into a single model with enhanced performance and broader task adaptability. It has gained popularity in large pretrained model development due to its ability to bypass the need for original training data and further training processes. However, most existing model merging approaches focus solely on exploring the parameter space, merging models with identical architectures. Merging within the architecture space, despite its potential, remains in its early stages due to the vast search space and the challenges of layer compatibility. This paper marks a significant advance toward more flexible and comprehensive model merging techniques by modeling the architecture-space merging process as a reinforcement learning task. We train policy and value networks using offline sampling of weight vectors, which are then employed for the online optimization of merging strategies. Moreover, a multi-objective optimization paradigm is introduced to accommodate users' diverse task preferences, learning the Pareto front of optimal models to offer customized merging suggestions. Experimental results across multiple tasks, including text translation, mathematical reasoning, and code generation, validate the effectiveness and superiority of the proposed framework in model merging. The code will be made publicly available after the review process.
Abstract:This paper introduces GateAttentionPose, an innovative approach that enhances the UniRepLKNet architecture for pose estimation tasks. We present two key contributions: the Agent Attention module and the Gate-Enhanced Feedforward Block (GEFB). The Agent Attention module replaces large kernel convolutions, significantly improving computational efficiency while preserving global context modeling. The GEFB augments feature extraction and processing capabilities, particularly in complex scenes. Extensive evaluations on COCO and MPII datasets demonstrate that GateAttentionPose outperforms existing state-of-the-art methods, including the original UniRepLKNet, achieving superior or comparable results with improved efficiency. Our approach offers a robust solution for pose estimation across diverse applications, including autonomous driving, human motion capture, and virtual reality.
Abstract:Pose estimation is a crucial task in computer vision, with wide applications in autonomous driving, human motion capture, and virtual reality. However, existing methods still face challenges in achieving high accuracy, particularly in complex scenes. This paper proposes a novel pose estimation method, GatedUniPose, which combines UniRepLKNet and Gated Convolution and introduces the GLACE module for embedding. Additionally, we enhance the feature map concatenation method in the head layer by using DySample upsampling. Compared to existing methods, GatedUniPose excels in handling complex scenes and occlusion challenges. Experimental results on the COCO, MPII, and CrowdPose datasets demonstrate that GatedUniPose achieves significant performance improvements with a relatively small number of parameters, yielding better or comparable results to models with similar or larger parameter sizes.
Abstract:Evolutionary Multi-task Optimization (EMTO) is a paradigm that leverages knowledge transfer across simultaneously optimized tasks for enhanced search performance. To facilitate EMTO's performance, various knowledge transfer models have been developed for specific optimization tasks. However, designing these models often requires substantial expert knowledge. Recently, large language models (LLMs) have achieved remarkable success in autonomous programming, aiming to produce effective solvers for specific problems. In this work, a LLM-based optimization paradigm is introduced to establish an autonomous model factory for generating knowledge transfer models, ensuring effective and efficient knowledge transfer across various optimization tasks. To evaluate the performance of the proposed method, we conducted comprehensive empirical studies comparing the knowledge transfer model generated by the LLM with existing state-of-the-art knowledge transfer methods. The results demonstrate that the generated model is able to achieve superior or competitive performance against hand-crafted knowledge transfer models in terms of both efficiency and effectiveness.
Abstract:Transferable neural architecture search (TNAS) has been introduced to design efficient neural architectures for multiple tasks, to enhance the practical applicability of NAS in real-world scenarios. In TNAS, architectural knowledge accumulated in previous search processes is reused to warm up the architecture search for new tasks. However, existing TNAS methods still search in an extensive search space, necessitating the evaluation of numerous architectures. To overcome this challenge, this work proposes a novel transfer paradigm, i.e., design principle transfer. In this work, the linguistic description of various structural components' effects on architectural performance is termed design principles. They are learned from established architectures and then can be reused to reduce the search space by discarding unpromising architectures. Searching in the refined search space can boost both the search performance and efficiency for new NAS tasks. To this end, a large language model (LLM)-assisted design principle transfer (LAPT) framework is devised. In LAPT, LLM is applied to automatically reason the design principles from a set of given architectures, and then a principle adaptation method is applied to refine these principles progressively based on the new search results. Experimental results show that LAPT can beat the state-of-the-art TNAS methods on most tasks and achieve comparable performance on others.
Abstract:Expensive optimization problems (EOPs) have attracted increasing research attention over the decades due to their ubiquity in a variety of practical applications. Despite many sophisticated surrogate-assisted evolutionary algorithms (SAEAs) that have been developed for solving such problems, most of them lack the ability to transfer knowledge from previously-solved tasks and always start their search from scratch, making them troubled by the notorious cold-start issue. A few preliminary studies that integrate transfer learning into SAEAs still face some issues, such as defective similarity quantification that is prone to underestimate promising knowledge, surrogate-dependency that makes the transfer methods not coherent with the state-of-the-art in SAEAs, etc. In light of the above, a plug and play competitive knowledge transfer method is proposed to boost various SAEAs in this paper. Specifically, both the optimized solutions from the source tasks and the promising solutions acquired by the target surrogate are treated as task-solving knowledge, enabling them to compete with each other to elect the winner for expensive evaluation, thus boosting the search speed on the target task. Moreover, the lower bound of the convergence gain brought by the knowledge competition is mathematically analyzed, which is expected to strengthen the theoretical foundation of sequential transfer optimization. Experimental studies conducted on a series of benchmark problems and a practical application from the petroleum industry verify the efficacy of the proposed method. The source code of the competitive knowledge transfer is available at https://github.com/XmingHsueh/SAS-CKT.
Abstract:Large language models (LLMs) have exhibited their problem-solving ability in mathematical reasoning. Solving realistic optimization (OPT) problems in industrial application scenarios requires advanced and applied math ability. However, current OPT benchmarks that merely solve linear programming are far from complex realistic situations. In this work, we propose E-OPT, a benchmark for end-to-end optimization problem-solving with human-readable inputs and outputs. E-OPT contains rich optimization problems, including linear/nonlinear programming with/without table data, which can comprehensively evaluate LLMs' solving ability. In our benchmark, LLMs are required to correctly understand the problem in E-OPT and call code solver to get precise numerical answers. Furthermore, to alleviate the data scarcity for optimization problems, and to bridge the gap between open-source LLMs on a small scale (e.g., Llama-2-7b and Llama-3-8b) and closed-source LLMs (e.g., GPT-4), we further propose a novel data synthesis method namely ReSocratic. Unlike general data synthesis methods that proceed from questions to answers, ReSocratic first incrementally synthesizes optimization scenarios with mathematical formulations step by step and then back-translates the generated scenarios into questions. In such a way, we construct the ReSocratic-29k dataset from a small seed sample pool with the powerful open-source large model DeepSeek-V2. To demonstrate the effectiveness of ReSocratic, we conduct supervised fine-tuning with ReSocratic-29k on multiple open-source models. The results show that Llama3-8b is significantly improved from 13.6% to 51.7% on E-OPT, while DeepSeek-V2 reaches 61.0%, approaching 65.5% of GPT-4.
Abstract:Evolutionary multitasking (EMT) is an emerging approach for solving multitask optimization problems (MTOPs) and has garnered considerable research interest. The implicit EMT is a significant research branch that utilizes evolution operators to enable knowledge transfer (KT) between tasks. However, current approaches in implicit EMT face challenges in adaptability, due to the use of a limited number of evolution operators and insufficient utilization of evolutionary states for performing KT. This results in suboptimal exploitation of implicit KT's potential to tackle a variety of MTOPs. To overcome these limitations, we propose a novel Learning to Transfer (L2T) framework to automatically discover efficient KT policies for the MTOPs at hand. Our framework conceptualizes the KT process as a learning agent's sequence of strategic decisions within the EMT process. We propose an action formulation for deciding when and how to transfer, a state representation with informative features of evolution states, a reward formulation concerning convergence and transfer efficiency gain, and the environment for the agent to interact with MTOPs. We employ an actor-critic network structure for the agent and learn it via proximal policy optimization. This learned agent can be integrated with various evolutionary algorithms, enhancing their ability to address a range of new MTOPs. Comprehensive empirical studies on both synthetic and real-world MTOPs, encompassing diverse inter-task relationships, function classes, and task distributions are conducted to validate the proposed L2T framework. The results show a marked improvement in the adaptability and performance of implicit EMT when solving a wide spectrum of unseen MTOPs.
Abstract:Multi-objective optimization problems (MOPs) are prevalent in various real-world applications, necessitating sophisticated solutions that balance conflicting objectives. Traditional evolutionary algorithms (EAs), while effective, often rely on domain-specific expert knowledge and iterative tuning, which can impede innovation when encountering novel MOPs. Very recently, the emergence of Large Language Models (LLMs) has revolutionized software engineering by enabling the autonomous development and refinement of programs. Capitalizing on this advancement, we propose a new LLM-based framework for evolving EA operators, designed to address a wide array of MOPs. This framework facilitates the production of EA operators without the extensive demands for expert intervention, thereby streamlining the design process. To validate the efficacy of our approach, we have conducted extensive empirical studies across various categories of MOPs. The results demonstrate the robustness and superior performance of our LLM-evolved operators.
Abstract:Large language models (LLMs) have gained widespread popularity and demonstrated exceptional performance not only in natural language processing (NLP) tasks but also in non-linguistic domains. Their potential as artificial general intelligence extends beyond NLP, showcasing promising capabilities in diverse optimization scenarios. Despite this rising trend, whether the integration of LLMs into these black-box optimization problems is genuinely beneficial remains unexplored. This paper endeavors to tackle this issue by offering deeper insights into the potential of LLMs in optimization tasks through a comprehensive investigation. Our approach involves a comprehensive evaluation, covering both discrete and continuous optimization problems, aiming to assess the efficacy and distinctive characteristics that LLMs bring to the realm of optimization. Our findings reveal both the limitations and advantages of LLMs in optimization. On one hand, despite consuming the significant power required to run the model, LLMs exhibit subpar performance and lack desirable properties in pure numerical tasks, primarily due to a mismatch between the problem domain and their processing capabilities. On the other hand, although LLMs may not be ideal for traditional numerical optimization, their potential in broader optimization contexts remains promising. LLMs exhibit the ability to solve problems in non-numerical domains and can leverage heuristics from the prompt to enhance their performance. To the best of our knowledge, this work presents the first systematic evaluation of LLMs for numerical optimization, offering a progressive, wide-coverage, and behavioral analysis. Our findings pave the way for a deeper understanding of LLMs' role in optimization and guide future application in diverse scenarios for LLMs.