Abstract:Graph neural networks (GNNs) have demonstrated remarkable success in graph representation learning, and various sampling approaches have been proposed to scale GNNs to applications with large-scale graphs. A class of promising GNN training algorithms take advantage of historical embeddings to reduce the computation and memory cost while maintaining the model expressiveness of GNNs. However, they incur significant computation bias due to the stale feature history. In this paper, we provide a comprehensive analysis of their staleness and inferior performance on large-scale problems. Motivated by our discoveries, we propose a simple yet highly effective training algorithm (REST) to effectively reduce feature staleness, which leads to significantly improved performance and convergence across varying batch sizes. The proposed algorithm seamlessly integrates with existing solutions, boasting easy implementation, while comprehensive experiments underscore its superior performance and efficiency on large-scale benchmarks. Specifically, our improvements to state-of-the-art historical embedding methods result in a 2.7% and 3.6% performance enhancement on the ogbn-papers100M and ogbn-products dataset respectively, accompanied by notably accelerated convergence.
Abstract:Tiny object detection is becoming one of the most challenging tasks in computer vision because of the limited object size and lack of information. The label assignment strategy is a key factor affecting the accuracy of object detection. Although there are some effective label assignment strategies for tiny objects, most of them focus on reducing the sensitivity to the bounding boxes to increase the number of positive samples and have some fixed hyperparameters need to set. However, more positive samples may not necessarily lead to better detection results, in fact, excessive positive samples may lead to more false positives. In this paper, we introduce a simple but effective strategy named the Similarity Distance (SimD) to evaluate the similarity between bounding boxes. This proposed strategy not only considers both location and shape similarity but also learns hyperparameters adaptively, ensuring that it can adapt to different datasets and various object sizes in a dataset. Our approach can be simply applied in common anchor-based detectors in place of the IoU for label assignment and Non Maximum Suppression (NMS). Extensive experiments on four mainstream tiny object detection datasets demonstrate superior performance of our method, especially, 1.8 AP points and 4.1 AP points of very tiny higher than the state-of-the-art competitors on AI-TOD. Code is available at: \url{https://github.com/cszzshi/SimD}.
Abstract:Associating unstructured data with structured information is crucial for real-world tasks that require relevance search. However, existing graph learning benchmarks often overlook the rich semantic information associate with each node. To bridge such gap, we introduce the Multimodal Graph Benchmark (MM-GRAPH), the first comprehensive multi-modal graph benchmark that incorporates both textual and visual information. MM-GRAPH surpasses previous efforts, which have primarily focused on text-attributed graphs with various connectivity patterns. MM-GRAPH consists of five graph learning datasets of various scales that are appropriate for different learning tasks. Their multimodal node features, enabling a more comprehensive evaluation of graph learning algorithms in real-world scenarios. To facilitate research on multimodal graph learning, we further provide an extensive study on the performance of various graph neural networks in the presence of features from various modalities. MM-GRAPH aims to foster research on multimodal graph learning and drive the development of more advanced and robust graph learning algorithms. By providing a diverse set of datasets and benchmarks, MM-GRAPH enables researchers to evaluate and compare their models in realistic settings, ultimately leading to improved performance on real-world applications that rely on multimodal graph data.
Abstract:Road surface conditions, especially geometry profiles, enormously affect driving performance of autonomous vehicles. Vision-based online road reconstruction promisingly captures road information in advance. Existing solutions like monocular depth estimation and stereo matching suffer from modest performance. The recent technique of Bird's-Eye-View (BEV) perception provides immense potential to more reliable and accurate reconstruction. This paper uniformly proposes two simple yet effective models for road elevation reconstruction in BEV named RoadBEV-mono and RoadBEV-stereo, which estimate road elevation with monocular and stereo images, respectively. The former directly fits elevation values based on voxel features queried from image view, while the latter efficiently recognizes road elevation patterns based on BEV volume representing discrepancy between left and right voxel features. Insightful analyses reveal their consistence and difference with perspective view. Experiments on real-world dataset verify the models' effectiveness and superiority. Elevation errors of RoadBEV-mono and RoadBEV-stereo achieve 1.83cm and 0.56cm, respectively. The estimation performance improves by 50\% in BEV based on monocular image. Our models are promising for practical applications, providing valuable references for vision-based BEV perception in autonomous driving. The code is released at https://github.com/ztsrxh/RoadBEV.
Abstract:Recommendation systems (RS) are an increasingly relevant area for both academic and industry researchers, given their widespread impact on the daily online experiences of billions of users. One common issue in real RS is the cold-start problem, where users and items may not contain enough information to produce high-quality recommendations. This work focuses on a complementary problem: recommending new users and items unseen (out-of-vocabulary, or OOV) at training time. This setting is known as the inductive setting and is especially problematic for factorization-based models, which rely on encoding only those users/items seen at training time with fixed parameter vectors. Many existing solutions applied in practice are often naive, such as assigning OOV users/items to random buckets. In this work, we tackle this problem and propose approaches that better leverage available user/item features to improve OOV handling at the embedding table level. We discuss general-purpose plug-and-play approaches that are easily applicable to most RS models and improve inductive performance without negatively impacting transductive model performance. We extensively evaluate 9 OOV embedding methods on 5 models across 4 datasets (spanning different domains). One of these datasets is a proprietary production dataset from a prominent RS employed by a large social platform serving hundreds of millions of daily active users. In our experiments, we find that several proposed methods that exploit feature similarity using LSH consistently outperform alternatives on most model-dataset combinations, with the best method showing a mean improvement of 3.74% over the industry standard baseline in inductive performance. We release our code and hope our work helps practitioners make more informed decisions when handling OOV for their RS and further inspires academic research into improving OOV support in RS.
Abstract:Stereo matching plays a crucial role in 3D perception and scenario understanding. Despite the proliferation of promising methods, addressing texture-less and texture-repetitive conditions remains challenging due to the insufficient availability of rich geometric and semantic information. In this paper, we propose a lightweight volume refinement scheme to tackle the texture deterioration in practical outdoor scenarios. Specifically, we introduce a depth volume supervised by the ground-truth depth map, capturing the relative hierarchy of image texture. Subsequently, the disparity discrepancy volume undergoes hierarchical filtering through the incorporation of depth-aware hierarchy attention and target-aware disparity attention modules. Local fine structure and context are emphasized to mitigate ambiguity and redundancy during volume aggregation. Furthermore, we propose a more rigorous evaluation metric that considers depth-wise relative error, providing comprehensive evaluations for universal stereo matching and depth estimation models. We extensively validate the superiority of our proposed methods on public datasets. Results demonstrate that our model achieves state-of-the-art performance, particularly excelling in scenarios with texture-less images. The code is available at https://github.com/ztsrxh/DVANet.
Abstract:Graph Neural Networks (GNNs) have empowered the advance in graph-structured data analysis. Recently, the rise of Large Language Models (LLMs) like GPT-4 has heralded a new era in deep learning. However, their application to graph data poses distinct challenges due to the inherent difficulty of translating graph structures to language. To this end, we introduce the Large Language and Graph Assistant (LLaGA), an innovative model that effectively integrates LLM capabilities to handle the complexities of graph-structured data. LLaGA retains the general-purpose nature of LLMs while adapting graph data into a format compatible with LLM input. LLaGA achieves this by reorganizing graph nodes to structure-aware sequences and then mapping these into the token embedding space through a versatile projector. LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks, extend its ability to unseen datasets or tasks, and provide explanations for graphs. Our extensive experiments across popular graph benchmarks show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model, surpassing state-of-the-art graph models in both supervised and zero-shot scenarios. Our code is available at \url{https://github.com/VITA-Group/LLaGA}.
Abstract:Graph Neural Networks (GNNs) are prominent in graph machine learning and have shown state-of-the-art performance in Link Prediction (LP) tasks. Nonetheless, recent studies show that GNNs struggle to produce good results on low-degree nodes despite their overall strong performance. In practical applications of LP, like recommendation systems, improving performance on low-degree nodes is critical, as it amounts to tackling the cold-start problem of improving the experiences of users with few observed interactions. In this paper, we investigate improving GNNs' LP performance on low-degree nodes while preserving their performance on high-degree nodes and propose a simple yet surprisingly effective augmentation technique called NodeDup. Specifically, NodeDup duplicates low-degree nodes and creates links between nodes and their own duplicates before following the standard supervised LP training scheme. By leveraging a ''multi-view'' perspective for low-degree nodes, NodeDup shows significant LP performance improvements on low-degree nodes without compromising any performance on high-degree nodes. Additionally, as a plug-and-play augmentation module, NodeDup can be easily applied to existing GNNs with very light computational cost. Extensive experiments show that NodeDup achieves 38.49%, 13.34%, and 6.76% improvements on isolated, low-degree, and warm nodes, respectively, on average across all datasets compared to GNNs and state-of-the-art cold-start methods.
Abstract:Graph Foundation Model (GFM) is a new trending research topic in the graph domain, aiming to develop a graph model capable of generalizing across different graphs and tasks. However, a versatile GFM has not yet been achieved. The key challenge in building GFM is how to enable positive transfer across graphs with diverse structural patterns. Inspired by the existing foundation models in the CV and NLP domains, we propose a novel perspective for the GFM development by advocating for a "graph vocabulary", in which the basic transferable units underlying graphs encode the invariance on graphs. We ground the graph vocabulary construction from essential aspects including network analysis, theoretical foundations, and stability. Such a vocabulary perspective can potentially advance the future GFM design following the neural scaling laws.
Abstract:Deep graph models (e.g., graph neural networks and graph transformers) have become important techniques for leveraging knowledge across various types of graphs. Yet, the scaling properties of deep graph models have not been systematically investigated, casting doubt on the feasibility of achieving large graph models through enlarging the model and dataset sizes. In this work, we delve into neural scaling laws on graphs from both model and data perspectives. We first verify the validity of such laws on graphs, establishing formulations to describe the scaling behaviors. For model scaling, we investigate the phenomenon of scaling law collapse and identify overfitting as the potential reason. Moreover, we reveal that the model depth of deep graph models can impact the model scaling behaviors, which differ from observations in other domains such as CV and NLP. For data scaling, we suggest that the number of graphs can not effectively metric the graph data volume in scaling law since the sizes of different graphs are highly irregular. Instead, we reform the data scaling law with the number of edges as the metric to address the irregular graph sizes. We further demonstrate the reformed law offers a unified view of the data scaling behaviors for various fundamental graph tasks including node classification, link prediction, and graph classification. This work provides valuable insights into neural scaling laws on graphs, which can serve as an essential step toward large graph models.