Abstract:Intraoperative bleeding in laparoscopic surgery causes rapid obscuration of the operative field to hinder the surgical process. Intelligent detection of bleeding regions can quantify the blood loss to assist decision-making, while locating the bleeding point helps surgeons quickly identify the source of bleeding and achieve hemostasis in time. In this study, we first construct a real-world surgical bleeding detection dataset, named SurgBlood, comprising 5,330 frames from 95 surgical video clips with bleeding region and point annotations. Accordingly, we develop a dual-task synergistic online detector called BlooDet, designed to perform simultaneous detection of bleeding regions and points in surgical videos. Our framework embraces a dual-branch bidirectional guidance design based on Segment Anything Model 2 (SAM 2). The mask branch detects bleeding regions through adaptive edge and point prompt embeddings, while the point branch leverages mask memory to induce bleeding point memory modeling and captures the direction of bleed point movement through inter-frame optical flow. By interactive guidance and prompts, the two branches explore potential spatial-temporal relationships while leveraging memory modeling from previous frames to infer the current bleeding condition. Extensive experiments demonstrate that our approach outperforms other counterparts on SurgBlood in both bleeding region and point detection tasks, e.g., achieving 64.88% IoU for bleeding region detection and 83.69% PCK-10% for bleeding point detection.
Abstract:Evaluating the value alignment of large language models (LLMs) has traditionally relied on single-sentence adversarial prompts, which directly probe models with ethically sensitive or controversial questions. However, with the rapid advancements in AI safety techniques, models have become increasingly adept at circumventing these straightforward tests, limiting their effectiveness in revealing underlying biases and ethical stances. To address this limitation, we propose an upgraded value alignment benchmark that moves beyond single-sentence prompts by incorporating multi-turn dialogues and narrative-based scenarios. This approach enhances the stealth and adversarial nature of the evaluation, making it more robust against superficial safeguards implemented in modern LLMs. We design and implement a dataset that includes conversational traps and ethically ambiguous storytelling, systematically assessing LLMs' responses in more nuanced and context-rich settings. Experimental results demonstrate that this enhanced methodology can effectively expose latent biases that remain undetected in traditional single-shot evaluations. Our findings highlight the necessity of contextual and dynamic testing for value alignment in LLMs, paving the way for more sophisticated and realistic assessments of AI ethics and safety.
Abstract:Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
Abstract:Conventional methods for point cloud completion, typically trained on synthetic datasets, face significant challenges when applied to out-of-distribution real-world scans. In this paper, we propose an effective yet simple source-free domain adaptation framework for point cloud completion, termed \textbf{PointSFDA}. Unlike unsupervised domain adaptation that reduces the domain gap by directly leveraging labeled source data, PointSFDA uses only a pretrained source model and unlabeled target data for adaptation, avoiding the need for inaccessible source data in practical scenarios. Being the first source-free domain adaptation architecture for point cloud completion, our method offers two core contributions. First, we introduce a coarse-to-fine distillation solution to explicitly transfer the global geometry knowledge learned from the source dataset. Second, as noise may be introduced due to domain gaps, we propose a self-supervised partial-mask consistency training strategy to learn local geometry information in the target domain. Extensive experiments have validated that our method significantly improves the performance of state-of-the-art networks in cross-domain shape completion. Our code is available at \emph{\textcolor{magenta}{https://github.com/Starak-x/PointSFDA}}.
Abstract:Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications. While zero-shot OOD detection, which requires no training on in-distribution (ID) data, has become feasible with the emergence of vision-language models like CLIP, existing methods primarily focus on semantic matching and fail to fully capture distributional discrepancies. To address these limitations, we propose OT-DETECTOR, a novel framework that employs Optimal Transport (OT) to quantify both semantic and distributional discrepancies between test samples and ID labels. Specifically, we introduce cross-modal transport mass and transport cost as semantic-wise and distribution-wise OOD scores, respectively, enabling more robust detection of OOD samples. Additionally, we present a semantic-aware content refinement (SaCR) module, which utilizes semantic cues from ID labels to amplify the distributional discrepancy between ID and hard OOD samples. Extensive experiments on several benchmarks demonstrate that OT-DETECTOR achieves state-of-the-art performance across various OOD detection tasks, particularly in challenging hard-OOD scenarios.
Abstract:Cardiovascular magnetic resonance (CMR) offers diverse imaging contrasts for assessment of cardiac function and tissue characterization. However, acquiring each single CMR modality is often time-consuming, and comprehensive clinical protocols require multiple modalities with various sampling patterns, further extending the overall acquisition time and increasing susceptibility to motion artifacts. Existing deep learning-based reconstruction methods are often designed for specific acquisition parameters, which limits their ability to generalize across a variety of scan scenarios. As part of the CMRxRecon Series, the CMRxRecon2024 challenge provides diverse datasets encompassing multi-modality multi-view imaging with various sampling patterns, and a platform for the international community to develop and benchmark reconstruction solutions in two well-crafted tasks. Task 1 is a modality-universal setting, evaluating the out-of-distribution generalization of the reconstructed model, while Task 2 follows sampling-universal setting assessing the one-for-all adaptability of the universal model. Main contributions include providing the first and largest publicly available multi-modality, multi-view cardiac k-space dataset; developing a benchmarking platform that simulates clinical acceleration protocols, with a shared code library and tutorial for various k-t undersampling patterns and data processing; giving technical insights of enhanced data consistency based on physic-informed networks and adaptive prompt-learning embedding to be versatile to different clinical settings; additional finding on evaluation metrics to address the limitations of conventional ground-truth references in universal reconstruction tasks.
Abstract:Tongue diagnosis is a vital tool in Western and Traditional Chinese Medicine, providing key insights into a patient's health by analyzing tongue attributes. The COVID-19 pandemic has heightened the need for accurate remote medical assessments, emphasizing the importance of precise tongue attribute recognition via telehealth. To address this, we propose a Sign-Oriented multi-label Attributes Detection framework. Our approach begins with an adaptive tongue feature extraction module that standardizes tongue images and mitigates environmental factors. This is followed by a Sign-oriented Network (SignNet) that identifies specific tongue attributes, emulating the diagnostic process of experienced practitioners and enabling comprehensive health evaluations. To validate our methodology, we developed an extensive tongue image dataset specifically designed for telemedicine. Unlike existing datasets, ours is tailored for remote diagnosis, with a comprehensive set of attribute labels. This dataset will be openly available, providing a valuable resource for research. Initial tests have shown improved accuracy in detecting various tongue attributes, highlighting our framework's potential as an essential tool for remote medical assessments.
Abstract:Integrating multi-modal clinical data, such as electronic health records (EHR) and chest X-ray images (CXR), is particularly beneficial for clinical prediction tasks. However, in a temporal setting, multi-modal data are often inherently asynchronous. EHR can be continuously collected but CXR is generally taken with a much longer interval due to its high cost and radiation dose. When clinical prediction is needed, the last available CXR image might have been outdated, leading to suboptimal predictions. To address this challenge, we propose DDL-CXR, a method that dynamically generates an up-to-date latent representation of the individualized CXR images. Our approach leverages latent diffusion models for patient-specific generation strategically conditioned on a previous CXR image and EHR time series, providing information regarding anatomical structures and disease progressions, respectively. In this way, the interaction across modalities could be better captured by the latent CXR generation process, ultimately improving the prediction performance. Experiments using MIMIC datasets show that the proposed model could effectively address asynchronicity in multimodal fusion and consistently outperform existing methods.
Abstract:Multi-modal magnetic resonance imaging (MRI) provides rich, complementary information for analyzing diseases. However, the practical challenges of acquiring multiple MRI modalities, such as cost, scan time, and safety considerations, often result in incomplete datasets. This affects both the quality of diagnosis and the performance of deep learning models trained on such data. Recent advancements in generative adversarial networks (GANs) and denoising diffusion models have shown promise in natural and medical image-to-image translation tasks. However, the complexity of training GANs and the computational expense associated with diffusion models hinder their development and application in this task. To address these issues, we introduce a Cross-conditioned Diffusion Model (CDM) for medical image-to-image translation. The core idea of CDM is to use the distribution of target modalities as guidance to improve synthesis quality while achieving higher generation efficiency compared to conventional diffusion models. First, we propose a Modality-specific Representation Model (MRM) to model the distribution of target modalities. Then, we design a Modality-decoupled Diffusion Network (MDN) to efficiently and effectively learn the distribution from MRM. Finally, a Cross-conditioned UNet (C-UNet) with a Condition Embedding module is designed to synthesize the target modalities with the source modalities as input and the target distribution for guidance. Extensive experiments conducted on the BraTS2023 and UPenn-GBM benchmark datasets demonstrate the superiority of our method.
Abstract:In the era of large language models (LLMs), the task of ``System I''~-~the fast, unconscious, and intuitive tasks, e.g., sentiment analysis, text classification, etc., have been argued to be successfully solved. However, sarcasm, as a subtle linguistic phenomenon, often employs rhetorical devices like hyperbole and figuration to convey true sentiments and intentions, involving a higher level of abstraction than sentiment analysis. There is growing concern that the argument about LLMs' success may not be fully tenable when considering sarcasm understanding. To address this question, we select eleven SOTA LLMs and eight SOTA pre-trained language models (PLMs) and present comprehensive evaluations on six widely used benchmark datasets through different prompting approaches, i.e., zero-shot input/output (IO) prompting, few-shot IO prompting, chain of thought (CoT) prompting. Our results highlight three key findings: (1) current LLMs underperform supervised PLMs based sarcasm detection baselines across six sarcasm benchmarks. This suggests that significant efforts are still required to improve LLMs' understanding of human sarcasm. (2) GPT-4 consistently and significantly outperforms other LLMs across various prompting methods, with an average improvement of 14.0\%$\uparrow$. Claude 3 and ChatGPT demonstrate the next best performance after GPT-4. (3) Few-shot IO prompting method outperforms the other two methods: zero-shot IO and few-shot CoT. The reason is that sarcasm detection, being a holistic, intuitive, and non-rational cognitive process, is argued not to adhere to step-by-step logical reasoning, making CoT less effective in understanding sarcasm compared to its effectiveness in mathematical reasoning tasks.