Abstract:3D captioning, which aims to describe the content of 3D scenes in natural language, remains highly challenging due to the inherent sparsity of point clouds and weak cross-modal alignment in existing methods. To address these challenges, we propose 3D CoCa, a novel unified framework that seamlessly combines contrastive vision-language learning with 3D caption generation in a single architecture. Our approach leverages a frozen CLIP vision-language backbone to provide rich semantic priors, a spatially-aware 3D scene encoder to capture geometric context, and a multi-modal decoder to generate descriptive captions. Unlike prior two-stage methods that rely on explicit object proposals, 3D CoCa jointly optimizes contrastive and captioning objectives in a shared feature space, eliminating the need for external detectors or handcrafted proposals. This joint training paradigm yields stronger spatial reasoning and richer semantic grounding by aligning 3D and textual representations. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that 3D CoCa significantly outperforms current state-of-the-arts by 10.2% and 5.76% in CIDEr at 0.5IoU, respectively. Code will be available at https://github.com/AIGeeksGroup/3DCoCa.
Abstract:Given the critical role of birds in ecosystems, Fine-Grained Bird Recognition (FGBR) has gained increasing attention, particularly in distinguishing birds within similar subcategories. Although Vision Transformer (ViT)-based methods often outperform Convolutional Neural Network (CNN)-based methods in FGBR, recent studies reveal that the limited receptive field of plain ViT model hinders representational richness and makes them vulnerable to scale variance. Thus, enhancing the multi-scale capabilities of existing ViT-based models to overcome this bottleneck in FGBR is a worthwhile pursuit. In this paper, we propose a novel framework for FGBR, namely Multi-scale Diverse Cues Modeling (MDCM), which explores diverse cues at different scales across various stages of a multi-scale Vision Transformer (MS-ViT) in an "Activation-Selection-Aggregation" paradigm. Specifically, we first propose a multi-scale cue activation module to ensure the discriminative cues learned at different stage are mutually different. Subsequently, a multi-scale token selection mechanism is proposed to remove redundant noise and highlight discriminative, scale-specific cues at each stage. Finally, the selected tokens from each stage are independently utilized for bird recognition, and the recognition results from multiple stages are adaptively fused through a multi-scale dynamic aggregation mechanism for final model decisions. Both qualitative and quantitative results demonstrate the effectiveness of our proposed MDCM, which outperforms CNN- and ViT-based models on several widely-used FGBR benchmarks.
Abstract:Pre-trained conditional diffusion models have demonstrated remarkable potential in image editing. However, they often face challenges with temporal consistency, particularly in the talking head domain, where continuous changes in facial expressions intensify the level of difficulty. These issues stem from the independent editing of individual images and the inherent loss of temporal continuity during the editing process. In this paper, we introduce Follow Your Motion (FYM), a generic framework for maintaining temporal consistency in portrait editing. Specifically, given portrait images rendered by a pre-trained 3D Gaussian Splatting model, we first develop a diffusion model that intuitively and inherently learns motion trajectory changes at different scales and pixel coordinates, from the first frame to each subsequent frame. This approach ensures that temporally inconsistent edited avatars inherit the motion information from the rendered avatars. Secondly, to maintain fine-grained expression temporal consistency in talking head editing, we propose a dynamic re-weighted attention mechanism. This mechanism assigns higher weight coefficients to landmark points in space and dynamically updates these weights based on landmark loss, achieving more consistent and refined facial expressions. Extensive experiments demonstrate that our method outperforms existing approaches in terms of temporal consistency and can be used to optimize and compensate for temporally inconsistent outputs in a range of applications, such as text-driven editing, relighting, and various other applications.
Abstract:As interest grows in world models that predict future states from current observations and actions, accurately modeling part-level dynamics has become increasingly relevant for various applications. Existing approaches, such as Puppet-Master, rely on fine-tuning large-scale pre-trained video diffusion models, which are impractical for real-world use due to the limitations of 2D video representation and slow processing times. To overcome these challenges, we present PartRM, a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object. PartRM builds upon large 3D Gaussian reconstruction models, leveraging their extensive knowledge of appearance and geometry in static objects. To address data scarcity in 4D, we introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states. We enhance the model's understanding of interaction conditions with a multi-scale drag embedding module that captures dynamics at varying granularities. To prevent catastrophic forgetting during fine-tuning, we implement a two-stage training process that focuses sequentially on motion and appearance learning. Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics. Our code, data, and models are publicly available to facilitate future research.
Abstract:We introduce HOIGPT, a token-based generative method that unifies 3D hand-object interactions (HOI) perception and generation, offering the first comprehensive solution for captioning and generating high-quality 3D HOI sequences from a diverse range of conditional signals (\eg text, objects, partial sequences). At its core, HOIGPT utilizes a large language model to predict the bidrectional transformation between HOI sequences and natural language descriptions. Given text inputs, HOIGPT generates a sequence of hand and object meshes; given (partial) HOI sequences, HOIGPT generates text descriptions and completes the sequences. To facilitate HOI understanding with a large language model, this paper introduces two key innovations: (1) a novel physically grounded HOI tokenizer, the hand-object decomposed VQ-VAE, for discretizing HOI sequences, and (2) a motion-aware language model trained to process and generate both text and HOI tokens. Extensive experiments demonstrate that HOIGPT sets new state-of-the-art performance on both text generation (+2.01% R Precision) and HOI generation (-2.56 FID) across multiple tasks and benchmarks.
Abstract:Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning such as accurately understanding the relative positions of objects. Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities. Our interpretability-driven analysis reveals a critical underlying cause: vision embeddings in VLMs are treated primarily as semantic ``bag-of-tokens," overshadowing subtle yet crucial positional cues due to their disproportionately large embedding norms. We validate this insight through extensive diagnostic experiments, demonstrating minimal performance impact when token orders or fine-grained spatial details are removed. Guided by these findings, we propose simple, interpretable interventions, including normalizing vision embedding norms and extracting mid-layer spatially rich features, to restore spatial awareness. Empirical results on both our synthetic data and standard benchmarks demonstrate improved spatial reasoning capabilities, highlighting the value of interpretability-informed design choices. Our study not only uncovers fundamental limitations in current VLM architectures but also provides actionable insights for enhancing structured perception of visual scenes.
Abstract:A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields. Despite rapid progress in image compression, computational inefficiency and poor redundancy modeling still pose significant bottlenecks, limiting practical applications. Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods and improve image compression from multiple perspectives. In this paper, we integrate the advantages of SSMs for better efficiency-performance trade-off and propose an enhanced image compression approach through refined context modeling, which we term MambaIC. Specifically, we explore context modeling to adaptively refine the representation of hidden states. Additionally, we introduce window-based local attention into channel-spatial entropy modeling to reduce potential spatial redundancy during compression, thereby increasing efficiency. Comprehensive qualitative and quantitative results validate the effectiveness and efficiency of our approach, particularly for high-resolution image compression. Code is released at https://github.com/AuroraZengfh/MambaIC.
Abstract:Representing and rendering dynamic scenes from 2D images is a fundamental yet challenging problem in computer vision and graphics. This survey provides a comprehensive review of the evolution and advancements in dynamic scene representation and rendering, with a particular emphasis on recent progress in Neural Radiance Fields based and 3D Gaussian Splatting based reconstruction methods. We systematically summarize existing approaches, categorize them according to their core principles, compile relevant datasets, compare the performance of various methods on these benchmarks, and explore the challenges and future research directions in this rapidly evolving field. In total, we review over 170 relevant papers, offering a broad perspective on the state of the art in this domain.
Abstract:Diffusion models have been widely adopted in image and video generation. However, their complex network architecture leads to high inference overhead for its generation process. Existing diffusion quantization methods primarily focus on the quantization of the model structure while ignoring the impact of time-steps variation during sampling. At the same time, most current approaches fail to account for significant activations that cannot be eliminated, resulting in substantial performance degradation after quantization. To address these issues, we propose Time-Rotation Diffusion Quantization (TR-DQ), a novel quantization method incorporating time-step and rotation-based optimization. TR-DQ first divides the sampling process based on time-steps and applies a rotation matrix to smooth activations and weights dynamically. For different time-steps, a dedicated hyperparameter is introduced for adaptive timing modeling, which enables dynamic quantization across different time steps. Additionally, we also explore the compression potential of Classifier-Free Guidance (CFG-wise) to establish a foundation for subsequent work. TR-DQ achieves state-of-the-art (SOTA) performance on image generation and video generation tasks and a 1.38-1.89x speedup and 1.97-2.58x memory reduction in inference compared to existing quantization methods.
Abstract:Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications. While zero-shot OOD detection, which requires no training on in-distribution (ID) data, has become feasible with the emergence of vision-language models like CLIP, existing methods primarily focus on semantic matching and fail to fully capture distributional discrepancies. To address these limitations, we propose OT-DETECTOR, a novel framework that employs Optimal Transport (OT) to quantify both semantic and distributional discrepancies between test samples and ID labels. Specifically, we introduce cross-modal transport mass and transport cost as semantic-wise and distribution-wise OOD scores, respectively, enabling more robust detection of OOD samples. Additionally, we present a semantic-aware content refinement (SaCR) module, which utilizes semantic cues from ID labels to amplify the distributional discrepancy between ID and hard OOD samples. Extensive experiments on several benchmarks demonstrate that OT-DETECTOR achieves state-of-the-art performance across various OOD detection tasks, particularly in challenging hard-OOD scenarios.