Abstract:Human motion understanding and generation are crucial for vision and robotics but remain limited in reasoning capability and test-time planning. We propose MoRL, a unified multimodal motion model trained with supervised fine-tuning and reinforcement learning with verifiable rewards. Our task-specific reward design combines semantic alignment and reasoning coherence for understanding with physical plausibility and text-motion consistency for generation, improving both logical reasoning and perceptual realism. To further enhance inference, we introduce Chain-of-Motion (CoM), a test-time reasoning method that enables step-by-step planning and reflection. We also construct two large-scale CoT datasets, MoUnd-CoT-140K and MoGen-CoT-140K, to align motion sequences with reasoning traces and action descriptions. Experiments on HumanML3D and KIT-ML show that MoRL achieves significant gains over state-of-the-art baselines. Code: https://github.com/AIGeeksGroup/MoRL. Website: https://aigeeksgroup.github.io/MoRL.
Abstract:Recent advances in diffusion-based generative models have established a new paradigm for image and video relighting. However, extending these capabilities to 4D relighting remains challenging, due primarily to the scarcity of paired 4D relighting training data and the difficulty of maintaining temporal consistency across extreme viewpoints. In this work, we propose Light4D, a novel training-free framework designed to synthesize consistent 4D videos under target illumination, even under extreme viewpoint changes. First, we introduce Disentangled Flow Guidance, a time-aware strategy that effectively injects lighting control into the latent space while preserving geometric integrity. Second, to reinforce temporal consistency, we develop Temporal Consistent Attention within the IC-Light architecture and further incorporate deterministic regularization to eliminate appearance flickering. Extensive experiments demonstrate that our method achieves competitive performance in temporal consistency and lighting fidelity, robustly handling camera rotations from -90 to 90. Code: https://github.com/AIGeeksGroup/Light4D. Website: https://aigeeksgroup.github.io/Light4D.
Abstract:Achieving spatial intelligence requires moving beyond visual plausibility to build world simulators grounded in physical laws. While coding LLMs have advanced static 3D scene generation, extending this paradigm to 4D dynamics remains a critical frontier. This task presents two fundamental challenges: multi-scale context entanglement, where monolithic generation fails to balance local object structures with global environmental layouts; and a semantic-physical execution gap, where open-loop code generation leads to physical hallucinations lacking dynamic fidelity. We introduce Code2Worlds, a framework that formulates 4D generation as language-to-simulation code generation. First, we propose a dual-stream architecture that disentangles retrieval-augmented object generation from hierarchical environmental orchestration. Second, to ensure dynamic fidelity, we establish a physics-aware closed-loop mechanism in which a PostProcess Agent scripts dynamics, coupled with a VLM-Motion Critic that performs self-reflection to iteratively refine simulation code. Evaluations on the Code4D benchmark show Code2Worlds outperforms baselines with a 41% SGS gain and 49% higher Richness, while uniquely generating physics-aware dynamics absent in prior static methods. Code: https://github.com/AIGeeksGroup/Code2Worlds. Website: https://aigeeksgroup.github.io/Code2Worlds.
Abstract:Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.
Abstract:Despite the success of multimodal contrastive learning in aligning visual and linguistic representations, a persistent geometric anomaly, the Modality Gap, remains: embeddings of distinct modalities expressing identical semantics occupy systematically offset regions. Prior approaches to bridge this gap are largely limited by oversimplified isotropic assumptions, hindering their application in large-scale scenarios. In this paper, we address these limitations by precisely characterizing the geometric shape of the modality gap and leveraging it for efficient model scaling. First, we propose the Fixed-frame Modality Gap Theory, which decomposes the modality gap within a frozen reference frame into stable biases and anisotropic residuals. Guided by this precise modeling, we introduce ReAlign, a training-free modality alignment strategy. Utilizing statistics from massive unpaired data, ReAlign aligns text representation into the image representation distribution via a three-step process comprising Anchor, Trace, and Centroid Alignment, thereby explicitly rectifying geometric misalignment. Building on ReAlign, we propose ReVision, a scalable training paradigm for Multimodal Large Language Models (MLLMs). ReVision integrates ReAlign into the pretraining stage, enabling the model to learn the distribution of visual representations from unpaired text before visual instruction tuning, without the need for large-scale, high-quality image-text pairs. Our framework demonstrates that statistically aligned unpaired data can effectively substitute for expensive image-text pairs, offering a robust path for the efficient scaling of MLLMs.
Abstract:We explore the use of large language models (LLMs) for next-utterance prediction in human dialogue. Despite recent advances in LLMs demonstrating their ability to engage in natural conversations with users, we show that even leading models surprisingly struggle to predict a human speaker's next utterance. Instead, humans can readily anticipate forthcoming utterances based on multimodal cues, such as gestures, gaze, and emotional tone, from the context. To systematically examine whether LLMs can reproduce this ability, we propose SayNext-Bench, a benchmark that evaluates LLMs and Multimodal LLMs (MLLMs) on anticipating context-conditioned responses from multimodal cues spanning a variety of real-world scenarios. To support this benchmark, we build SayNext-PC, a novel large-scale dataset containing dialogues with rich multimodal cues. Building on this, we further develop a dual-route prediction MLLM, SayNext-Chat, that incorporates cognitively inspired design to emulate predictive processing in conversation. Experimental results demonstrate that our model outperforms state-of-the-art MLLMs in terms of lexical overlap, semantic similarity, and emotion consistency. Our results prove the feasibility of next-utterance prediction with LLMs from multimodal cues and emphasize the (i) indispensable role of multimodal cues and (ii) actively predictive processing as the foundation of natural human interaction, which is missing in current MLLMs. We hope that this exploration offers a new research entry toward more human-like, context-sensitive AI interaction for human-centered AI. Our benchmark and model can be accessed at https://saynext.github.io/.
Abstract:Recent studies have examined attention dynamics in large vision-language models (LVLMs) to detect hallucinations. However, existing approaches remain limited in reliably distinguishing hallucinated from factually grounded outputs, as they rely solely on forward-pass attention patterns and neglect gradient-based signals that reveal how token influence propagates through the network. To bridge this gap, we introduce LVLMs-Saliency, a gradient-aware diagnostic framework that quantifies the visual grounding strength of each output token by fusing attention weights with their input gradients. Our analysis uncovers a decisive pattern: hallucinations frequently arise when preceding output tokens exhibit low saliency toward the prediction of the next token, signaling a breakdown in contextual memory retention. Leveraging this insight, we propose a dual-mechanism inference-time framework to mitigate hallucinations: (1) Saliency-Guided Rejection Sampling (SGRS), which dynamically filters candidate tokens during autoregressive decoding by rejecting those whose saliency falls below a context-adaptive threshold, thereby preventing coherence-breaking tokens from entering the output sequence; and (2) Local Coherence Reinforcement (LocoRE), a lightweight, plug-and-play module that strengthens attention from the current token to its most recent predecessors, actively counteracting the contextual forgetting behavior identified by LVLMs-Saliency. Extensive experiments across multiple LVLMs demonstrate that our method significantly reduces hallucination rates while preserving fluency and task performance, offering a robust and interpretable solution for enhancing model reliability. Code is available at: https://github.com/zhangbaijin/LVLMs-Saliency
Abstract:Low-count positron emission tomography (PET) reconstruction is a challenging inverse problem due to severe degradations arising from Poisson noise, photon scarcity, and attenuation correction errors. Existing deep learning methods typically address these in the spatial domain with an undifferentiated optimization objective, making it difficult to disentangle overlapping artifacts and limiting correction effectiveness. In this work, we perform a Fourier-domain analysis and reveal that these degradations are spectrally separable: Poisson noise and photon scarcity cause high-frequency phase perturbations, while attenuation errors suppress low-frequency amplitude components. Leveraging this insight, we propose FourierPET, a Fourier-based unrolled reconstruction framework grounded in the Alternating Direction Method of Multipliers. It consists of three tailored modules: a spectral consistency module that enforces global frequency alignment to maintain data fidelity, an amplitude-phase correction module that decouples and compensates for high-frequency phase distortions and low-frequency amplitude suppression, and a dual adjustment module that accelerates convergence during iterative reconstruction. Extensive experiments demonstrate that FourierPET achieves state-of-the-art performance with significantly fewer parameters, while offering enhanced interpretability through frequency-aware correction.
Abstract:Reliable zero-shot detection of out-of-distribution (OOD) inputs is critical for deploying vision-language models in open-world settings. However, the lack of labeled negatives in zero-shot OOD detection necessitates proxy signals that remain effective under distribution shift. Existing negative-label methods rely on a fixed set of textual proxies, which (i) sparsely sample the semantic space beyond in-distribution (ID) classes and (ii) remain static while only visual features drift, leading to cross-modal misalignment and unstable predictions. In this paper, we propose CoEvo, a training- and annotation-free test-time framework that performs bidirectional, sample-conditioned adaptation of both textual and visual proxies. Specifically, CoEvo introduces a proxy-aligned co-evolution mechanism to maintain two evolving proxy caches, which dynamically mines contextual textual negatives guided by test images and iteratively refines visual proxies, progressively realigning cross-modal similarities and enlarging local OOD margins. Finally, we dynamically re-weight the contributions of dual-modal proxies to obtain a calibrated OOD score that is robust to distribution shift. Extensive experiments on standard benchmarks demonstrate that CoEvo achieves state-of-the-art performance, improving AUROC by 1.33% and reducing FPR95 by 45.98% on ImageNet-1K compared to strong negative-label baselines.
Abstract:Spatial intelligence refers to the ability to perceive, reason about, and describe objects and their relationships within three-dimensional environments, forming a foundation for embodied perception and scene understanding. 3D captioning aims to describe 3D scenes in natural language; however, it remains challenging due to the sparsity and irregularity of point clouds and, more critically, the weak grounding and limited out-of-distribution (OOD) generalization of existing captioners across drastically different environments, including indoor and outdoor 3D scenes. To address this challenge, we propose 3D CoCa v2, a generalizable 3D captioning framework that unifies contrastive vision-language learning with 3D caption generation and further improves robustness via test-time search (TTS) without updating the captioner parameters. 3D CoCa v2 builds on a frozen CLIP-based semantic prior, a spatially-aware 3D scene encoder for geometry, and a multimodal decoder jointly optimized with contrastive and captioning objectives, avoiding external detectors or handcrafted proposals. At inference, TTS produces diverse caption candidates and performs reward-guided selection using a compact scene summary. Experiments show improvements over 3D CoCa of +1.50 CIDEr@0.5IoU on ScanRefer and +1.61 CIDEr@0.5IoU on Nr3D, and +3.8 CIDEr@0.25 in zero-shot OOD evaluation on TOD3Cap. Code will be released at https://github.com/AIGeeksGroup/3DCoCav2.