Abstract:The sequence length along the time axis is often the dominant factor of the computational cost of self-supervised speech models. Works have been proposed to reduce the sequence length for lowering the computational cost. However, different downstream tasks have different tolerance of sequence compressing, so a model that produces a fixed compressing rate may not fit all tasks. In this work, we introduce a once-for-all (OFA) sequence compression framework for self-supervised speech models that supports a continuous range of compressing rates. The framework is evaluated on various tasks, showing marginal degradation compared to the fixed compressing rate variants with a smooth performance-efficiency trade-off. We further explore adaptive compressing rate learning, demonstrating the ability to select task-specific preferred frame periods without needing a grid search.
Abstract:Compressing self-supervised models has become increasingly necessary, as self-supervised models become larger. While previous approaches have primarily focused on compressing the model size, shortening sequences is also effective in reducing the computational cost. In this work, we study fixed-length and variable-length subsampling along the time axis in self-supervised learning. We explore how individual downstream tasks are sensitive to input frame rates. Subsampling while training self-supervised models not only improves the overall performance on downstream tasks under certain frame rates, but also brings significant speed-up in inference. Variable-length subsampling performs particularly well under low frame rates. In addition, if we have access to phonetic boundaries, we find no degradation in performance for an average frame rate as low as 10 Hz.
Abstract:Self-supervised Speech Models (S3Ms) have been proven successful in many speech downstream tasks, like ASR. However, how pre-training data affects S3Ms' downstream behavior remains an unexplored issue. In this paper, we study how pre-training data affects S3Ms by pre-training models on biased datasets targeting different factors of speech, including gender, content, and prosody, and evaluate these pre-trained S3Ms on selected downstream tasks in SUPERB Benchmark. Our experiments show that S3Ms have tolerance toward gender bias. Moreover, we find that the content of speech has little impact on the performance of S3Ms across downstream tasks, but S3Ms do show a preference toward a slower speech rate.