Abstract:Self-supervised speech representations can hugely benefit downstream speech technologies, yet the properties that make them useful are still poorly understood. Two candidate properties related to the geometry of the representation space have been hypothesized to correlate well with downstream tasks: (1) the degree of orthogonality between the subspaces spanned by the speaker centroids and phone centroids, and (2) the isotropy of the space, i.e., the degree to which all dimensions are effectively utilized. To study them, we introduce a new measure, Cumulative Residual Variance (CRV), which can be used to assess both properties. Using linear classifiers for speaker and phone ID to probe the representations of six different self-supervised models and two untrained baselines, we ask whether either orthogonality or isotropy correlate with linear probing accuracy. We find that both measures correlate with phonetic probing accuracy, though our results on isotropy are more nuanced.
Abstract:On annotating multi-dialect Arabic datasets, it is common to randomly assign the samples across a pool of native Arabic speakers. Recent analyses recommended routing dialectal samples to native speakers of their respective dialects to build higher-quality datasets. However, automatically identifying the dialect of samples is hard. Moreover, the pool of annotators who are native speakers of specific Arabic dialects might be scarce. Arabic Level of Dialectness (ALDi) was recently introduced as a quantitative variable that measures how sentences diverge from Standard Arabic. On randomly assigning samples to annotators, we hypothesize that samples of higher ALDi scores are harder to label especially if they are written in dialects that the annotators do not speak. We test this by analyzing the relation between ALDi scores and the annotators' agreement, on 15 public datasets having raw individual sample annotations for various sentence-classification tasks. We find strong evidence supporting our hypothesis for 11 of them. Consequently, we recommend prioritizing routing samples of high ALDi scores to native speakers of each sample's dialect, for which the dialect could be automatically identified at higher accuracies.
Abstract:Speech perception involves storing and integrating sequentially presented items. Recent work in cognitive neuroscience has identified temporal and contextual characteristics in humans' neural encoding of speech that may facilitate this temporal processing. In this study, we simulated similar analyses with representations extracted from a computational model that was trained on unlabelled speech with the learning objective of predicting upcoming acoustics. Our simulations revealed temporal dynamics similar to those in brain signals, implying that these properties can arise without linguistic knowledge. Another property shared between brains and the model is that the encoding patterns of phonemes support some degree of cross-context generalization. However, we found evidence that the effectiveness of these generalizations depends on the specific contexts, which suggests that this analysis alone is insufficient to support the presence of context-invariant encoding.
Abstract:Transcribed speech and user-generated text in Arabic typically contain a mixture of Modern Standard Arabic (MSA), the standardized language taught in schools, and Dialectal Arabic (DA), used in daily communications. To handle this variation, previous work in Arabic NLP has focused on Dialect Identification (DI) on the sentence or the token level. However, DI treats the task as binary, whereas we argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi), a continuous linguistic variable. We introduce the AOC-ALDi dataset (derived from the AOC dataset), containing 127,835 sentences (17% from news articles and 83% from user comments on those articles) which are manually labeled with their level of dialectness. We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora (including dialects and genres not included in AOC-ALDi), providing a more nuanced picture than traditional DI systems. Through case studies, we illustrate how ALDi can reveal Arabic speakers' stylistic choices in different situations, a useful property for sociolinguistic analyses.
Abstract:Acoustic word embeddings are typically created by training a pooling function using pairs of word-like units. For unsupervised systems, these are mined using k-nearest neighbor (KNN) search, which is slow. Recently, mean-pooled representations from a pre-trained self-supervised English model were suggested as a promising alternative, but their performance on target languages was not fully competitive. Here, we explore improvements to both approaches: we use continued pre-training to adapt the self-supervised model to the target language, and we use a multilingual phone recognizer (MPR) to mine phone n-gram pairs for training the pooling function. Evaluating on four languages, we show that both methods outperform a recent approach on word discrimination. Moreover, the MPR method is orders of magnitude faster than KNN, and is highly data efficient. We also show a small improvement from performing learned pooling on top of the continued pre-trained representations.
Abstract:Self-supervised speech representations are known to encode both speaker and phonetic information, but how they are distributed in the high-dimensional space remains largely unexplored. We hypothesize that they are encoded in orthogonal subspaces, a property that lends itself to simple disentanglement. Applying principal component analysis to representations of two predictive coding models, we identify two subspaces that capture speaker and phonetic variances, and confirm that they are nearly orthogonal. Based on this property, we propose a new speaker normalization method which collapses the subspace that encodes speaker information, without requiring transcriptions. Probing experiments show that our method effectively eliminates speaker information and outperforms a previous baseline in phone discrimination tasks. Moreover, the approach generalizes and can be used to remove information of unseen speakers.
Abstract:Parsing spoken dialogue presents challenges that parsing text does not, including a lack of clear sentence boundaries. We know from previous work that prosody helps in parsing single sentences (Tran et al. 2018), but we want to show the effect of prosody on parsing speech that isn't segmented into sentences. In experiments on the English Switchboard corpus, we find prosody helps our model both with parsing and with accurately identifying sentence boundaries. However, we find that the best-performing parser is not necessarily the parser that produces the best sentence segmentation performance. We suggest that the best parses instead come from modelling sentence boundaries jointly with other constituent boundaries.
Abstract:Given the strong results of self-supervised models on various tasks, there have been surprisingly few studies exploring self-supervised representations for acoustic word embeddings (AWE), fixed-dimensional vectors representing variable-length spoken word segments. In this work, we study several pre-trained models and pooling methods for constructing AWEs with self-supervised representations. Owing to the contextualized nature of self-supervised representations, we hypothesize that simple pooling methods, such as averaging, might already be useful for constructing AWEs. When evaluating on a standard word discrimination task, we find that HuBERT representations with mean-pooling rival the state of the art on English AWEs. More surprisingly, despite being trained only on English, HuBERT representations evaluated on Xitsonga, Mandarin, and French consistently outperform the multilingual model XLSR-53 (as well as Wav2Vec 2.0 trained on English).
Abstract:While corpora of child speech and child-directed speech (CDS) have enabled major contributions to the study of child language acquisition, semantic annotation for such corpora is still scarce and lacks a uniform standard. We compile two CDS corpora with sentential logical forms, one in English and the other in Hebrew. In compiling the corpora we employ a methodology that enforces a cross-linguistically consistent representation, building on recent advances in dependency representation and semantic parsing. The corpora are based on a sizable portion of Brown's Adam corpus from CHILDES (about 80% of its child-directed utterances), and to all child-directed utterances from Berman's Hebrew CHILDES corpus Hagar. We begin by annotating the corpora with the Universal Dependencies (UD) scheme for syntactic annotation, motivated by its applicability to a wide variety of domains and languages. We then proceed by applying an automatic method for transducing sentential logical forms (LFs) from UD structures. The two representations have complementary strengths: UD structures are language-neutral and support direct annotation, whereas LFs are neutral as to the interface between syntax and semantics, and transparently encode semantic distinctions. We verify the quality of the annotated UD annotation using an inter-annotator agreement study. We then demonstrate the utility of the compiled corpora through a longitudinal corpus study of the prevalence of different syntactic and semantic phenomena.
Abstract:Word segmentation, the problem of finding word boundaries in speech, is of interest for a range of tasks. Previous papers have suggested that for sequence-to-sequence models trained on tasks such as speech translation or speech recognition, attention can be used to locate and segment the words. We show, however, that even on monolingual data this approach is brittle. In our experiments with different input types, data sizes, and segmentation algorithms, only models trained to predict phones from words succeed in the task. Models trained to predict words from either phones or speech (i.e., the opposite direction needed to generalize to new data), yield much worse results, suggesting that attention-based segmentation is only useful in limited scenarios.