CLSP
Abstract:Despite significant recent advances in generative acoustic text-to-music (TTM) modeling, robust evaluation of these models lags behind, relying in particular on the popular Fr\'echet Audio Distance (FAD). In this work, we rigorously study the design space of reference-based divergence metrics for evaluating TTM models through (1) designing four synthetic meta-evaluations to measure sensitivity to particular musical desiderata, and (2) collecting and evaluating on MusicPrefs, the first open-source dataset of human preferences for TTM systems. We find that not only is the standard FAD setup inconsistent on both synthetic and human preference data, but that nearly all existing metrics fail to effectively capture desiderata, and are only weakly correlated with human perception. We propose a new metric, the MAUVE Audio Divergence (MAD), computed on representations from a self-supervised audio embedding model. We find that this metric effectively captures diverse musical desiderata (average rank correlation 0.84 for MAD vs. 0.49 for FAD and also correlates more strongly with MusicPrefs (0.62 vs. 0.14).
Abstract:Advancements in audio foundation models (FMs) have fueled interest in end-to-end (E2E) spoken dialogue systems, but different web interfaces for each system makes it challenging to compare and contrast them effectively. Motivated by this, we introduce an open-source, user-friendly toolkit designed to build unified web interfaces for various cascaded and E2E spoken dialogue systems. Our demo further provides users with the option to get on-the-fly automated evaluation metrics such as (1) latency, (2) ability to understand user input, (3) coherence, diversity, and relevance of system response, and (4) intelligibility and audio quality of system output. Using the evaluation metrics, we compare various cascaded and E2E spoken dialogue systems with a human-human conversation dataset as a proxy. Our analysis demonstrates that the toolkit allows researchers to effortlessly compare and contrast different technologies, providing valuable insights such as current E2E systems having poorer audio quality and less diverse responses. An example demo produced using our toolkit is publicly available here: https://huggingface.co/spaces/Siddhant/Voice_Assistant_Demo.
Abstract:The recent wave of audio foundation models (FMs) could provide new capabilities for conversational modeling. However, there have been limited efforts to evaluate these audio FMs comprehensively on their ability to have natural and interactive conversations. To engage in meaningful conversation with the end user, we would want the FMs to additionally perform a fluent succession of turns without too much overlapping speech or long stretches of silence. Inspired by this, we ask whether the recently proposed audio FMs can understand, predict, and perform turn-taking events? To answer this, we propose a novel evaluation protocol that can assess spoken dialog system's turn-taking capabilities using a supervised model as a judge that has been trained to predict turn-taking events in human-human conversations. Using this protocol, we present the first comprehensive user study that evaluates existing spoken dialogue systems on their ability to perform turn-taking events and reveal many interesting insights, such as they sometimes do not understand when to speak up, can interrupt too aggressively and rarely backchannel. We further evaluate multiple open-source and proprietary audio FMs accessible through APIs on carefully curated test benchmarks from Switchboard to measure their ability to understand and predict turn-taking events and identify significant room for improvement. We will open source our evaluation platform to promote the development of advanced conversational AI systems.
Abstract:Recent efforts have extended textual LLMs to the speech domain. Yet, a key challenge remains, which is balancing speech understanding and generation while avoiding catastrophic forgetting when integrating acoustically rich codec-based representations into models originally trained on text. In this work, we propose a novel approach that leverages continual pre-training (CPT) on a pre-trained textual LLM to create a codec-based speech language model. This strategy mitigates the modality gap between text and speech, preserving the linguistic reasoning of the original model while enabling high-fidelity speech synthesis. We validate our approach with extensive experiments across multiple tasks, including automatic speech recognition, text-to-speech, speech-to-text translation, and speech-to-speech translation (S2ST), demonstrating that our model achieves superior TTS performance and, notably, the first end-to-end S2ST system based on neural codecs.
Abstract:We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.
Abstract:Allophony refers to the variation in the phonetic realization of a phoneme based on its phonetic environment. Modeling allophones is crucial for atypical pronunciation assessment, which involves distinguishing atypical from typical pronunciations. However, recent phoneme classifier-based approaches often simplify this by treating various realizations as a single phoneme, bypassing the complexity of modeling allophonic variation. Motivated by the acoustic modeling capabilities of frozen self-supervised speech model (S3M) features, we propose MixGoP, a novel approach that leverages Gaussian mixture models to model phoneme distributions with multiple subclusters. Our experiments show that MixGoP achieves state-of-the-art performance across four out of five datasets, including dysarthric and non-native speech. Our analysis further suggests that S3M features capture allophonic variation more effectively than MFCCs and Mel spectrograms, highlighting the benefits of integrating MixGoP with S3M features.
Abstract:Self-supervised speech models (S3Ms) have become a common tool for the speech processing community, leveraging representations for downstream tasks. Clustering S3M representations yields discrete speech units (DSUs), which serve as compact representations for speech signals. DSUs are typically obtained by k-means clustering. Using DSUs often leads to strong performance in various tasks, including automatic speech recognition (ASR). However, even with the high dimensionality and redundancy of S3M representations, preprocessing S3M representations for better clustering remains unexplored, even though it can affect the quality of DSUs. In this paper, we investigate the potential of linear preprocessing methods for extracting DSUs. We evaluate standardization, principal component analysis, whitening, and independent component analysis (ICA) on DSU-based ASR benchmarks and demonstrate their effectiveness as preprocessing for k-means. We also conduct extensive analyses of their behavior, such as orthogonality or interpretability of individual components of ICA.
Abstract:Audiovisual Automatic Speech Recognition (AV-ASR) aims to improve speech recognition accuracy by leveraging visual signals. It is particularly challenging in unconstrained real-world scenarios across various domains due to noisy acoustic environments, spontaneous speech, and the uncertain use of visual information. Most previous works fine-tune audio-only ASR models on audiovisual datasets, optimizing them for conventional ASR objectives. However, they often neglect visual features and common errors in unconstrained video scenarios. In this paper, we propose using a preference optimization strategy to improve speech recognition accuracy for real-world videos. First, we create preference data via simulating common errors that occurred in AV-ASR from two focals: manipulating the audio or vision input and rewriting the output transcript. Second, we propose BPO-AVASR, a Bifocal Preference Optimization method to improve AV-ASR models by leveraging both input-side and output-side preference. Extensive experiments demonstrate that our approach significantly improves speech recognition accuracy across various domains, outperforming previous state-of-the-art models on real-world video speech recognition.
Abstract:In this work, we introduce VERSA, a unified and standardized evaluation toolkit designed for various speech, audio, and music signals. The toolkit features a Pythonic interface with flexible configuration and dependency control, making it user-friendly and efficient. With full installation, VERSA offers 63 metrics with 711 metric variations based on different configurations. These metrics encompass evaluations utilizing diverse external resources, including matching and non-matching reference audio, text transcriptions, and text captions. As a lightweight yet comprehensive toolkit, VERSA is versatile to support the evaluation of a wide range of downstream scenarios. To demonstrate its capabilities, this work highlights example use cases for VERSA, including audio coding, speech synthesis, speech enhancement, singing synthesis, and music generation. The toolkit is available at https://github.com/shinjiwlab/versa.
Abstract:The amount of articulatory data available for training deep learning models is much less compared to acoustic speech data. In order to improve articulatory-to-acoustic synthesis performance in these low-resource settings, we propose a multimodal pre-training framework. On single-speaker speech synthesis tasks from real-time magnetic resonance imaging and surface electromyography inputs, the intelligibility of synthesized outputs improves noticeably. For example, compared to prior work, utilizing our proposed transfer learning methods improves the MRI-to-speech performance by 36% word error rate. In addition to these intelligibility results, our multimodal pre-trained models consistently outperform unimodal baselines on three objective and subjective synthesis quality metrics.