CLSP
Abstract:Benefiting from massive and diverse data sources, speech foundation models exhibit strong generalization and knowledge transfer capabilities to a wide range of downstream tasks. However, a limitation arises from their exclusive handling of single-speaker speech input, making them ineffective in recognizing multi-speaker overlapped speech, a common occurrence in real-world scenarios. In this study, we delve into the adaptation of speech foundation models to eliminate interfering speakers from overlapping speech and perform target-speaker automatic speech recognition (TS-ASR). Initially, we utilize the Whisper model as the foundation for adaptation and conduct a thorough comparison of its integration with existing target-speaker adaptation techniques. We then propose an innovative model termed Speaker-Querying Whisper (SQ-Whisper), which employs a set number of trainable queries to capture speaker prompts from overlapping speech based on target-speaker enrollment. These prompts serve to steer the model in extracting speaker-specific features and accurately recognizing target-speaker transcriptions. Experimental results demonstrate that our approach effectively adapts the pre-trained speech foundation model to TS-ASR. Compared with the robust TS-HuBERT model, the proposed SQ-Whisper significantly improves performance, yielding up to 15% and 10% relative reductions in word error rates (WERs) on the Libri2Mix and WSJ0-2Mix datasets, respectively. With data augmentation, we establish new state-of-the-art WERs of 14.6% on the Libri2Mix Test set and 4.4% on the WSJ0-2Mix Test set. Furthermore, we evaluate our model on the real-world AMI meeting dataset, which shows consistent improvement over other adaptation methods.
Abstract:Self-supervised learning (SSL) models have shown exceptional capabilities across various speech-processing tasks. Continuous SSL representations are effective but suffer from high computational and storage demands. On the other hand, discrete SSL representations, although with degraded performance, reduce transmission and storage costs, and improve input sequence efficiency through de-duplication and subword-modeling. To boost the performance of discrete representations for ASR, we introduce a novel fusion mechanism that integrates two discrete representations. The fusion mechanism preserves all the benefits of discrete representation while enhancing the model's performance by integrating complementary information. Additionally, we explore "self-augmented'' discrete representations, which apply transformations to a single continuous SSL representation, eliminating the fusion mechanism's dependency on multiple SSL models and further decreasing its inference costs. Experimental results on benchmarks, including LibriSpeech and ML-SUPERB, indicate up to 19% and 24% relative character error rate improvement compared with the non-fusion baseline, validating the effectiveness of our proposed methods.
Abstract:Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Abstract:This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Abstract:Recent studies have augmented large language models (LLMs) with speech capabilities, leading to the development of speech language models (SpeechLMs). Earlier SpeechLMs focused on single-turn speech-based question answering (QA), where user input comprised a speech context and a text question. More recent studies have extended this to multi-turn conversations, though they often require complex, multi-stage supervised fine-tuning (SFT) with diverse data. Another critical challenge with SpeechLMs is catastrophic forgetting-where models optimized for speech tasks suffer significant degradation in text-only performance. To mitigate these issues, we propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the LLM backbone. Our joint SFT combines text-only SFT data with three types of speech-related data: speech recognition and translation, speech-based QA, and mixed-modal SFT. Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks while preserving the original capabilities on text-only tasks. Furthermore, our model shows emergent abilities of effectively handling previously unseen prompts and tasks, including multi-turn, mixed-modal inputs.
Abstract:In this study, we aim to explore Multitask Speech Language Model (SpeechLM) efficient inference via token reduction. Unlike other modalities such as vision or text, speech has unique temporal dependencies, making previous efficient inference works on other modalities not directly applicable. Furthermore, methods for efficient SpeechLM inference on long sequence and sparse signals remain largely unexplored. Then we propose FastAdaSP, a weighted token merging framework specifically designed for various speech-related tasks to improve the trade-off between efficiency and performance. Experimental results on WavLLM and Qwen-Audio show that our method achieves the state-of-the-art (SOTA) efficiency-performance trade-off compared with other baseline methods. Specifically, FastAdaSP achieved 7x memory efficiency and 1.83x decoding throughput without any degradation on tasks like Emotion Recognition (ER) and Spoken Question Answering (SQA). The code will be available at https://github.com/yichen14/FastAdaSP
Abstract:We present a novel approach to end-to-end automatic speech recognition (ASR) that utilizes pre-trained masked language models (LMs) to facilitate the extraction of linguistic information. The proposed models, BERT-CTC and BECTRA, are specifically designed to effectively integrate pre-trained LMs (e.g., BERT) into end-to-end ASR models. BERT-CTC adapts BERT for connectionist temporal classification (CTC) by addressing the constraint of the conditional independence assumption between output tokens. This enables explicit conditioning of BERT's contextualized embeddings in the ASR process, seamlessly merging audio and linguistic information through an iterative refinement algorithm. BECTRA extends BERT-CTC to the transducer framework and trains the decoder network using a vocabulary suitable for ASR training. This aims to bridge the gap between the text processed in end-to-end ASR and BERT, as these models have distinct vocabularies with varying text formats and styles, such as the presence of punctuation. Experimental results on various ASR tasks demonstrate that the proposed models improve over both the CTC and transducer-based baselines, owing to the incorporation of BERT knowledge. Moreover, our in-depth analysis and investigation verify the effectiveness of the proposed formulations and architectural designs.
Abstract:Multilingual Automatic Speech Recognition (ASR) models are typically evaluated in a setting where the ground-truth language of the speech utterance is known, however, this is often not the case for most practical settings. Automatic Spoken Language Identification (SLID) models are not perfect and misclassifications have a substantial impact on the final ASR accuracy. In this paper, we present a simple and effective N-best re-ranking approach to improve multilingual ASR accuracy for several prominent acoustic models by employing external features such as language models and text-based language identification models. Our results on FLEURS using the MMS and Whisper models show spoken language identification accuracy improvements of 8.7% and 6.1%, respectively and word error rates which are 3.3% and 2.0% lower on these benchmarks.
Abstract:Neural codecs have become crucial to recent speech and audio generation research. In addition to signal compression capabilities, discrete codecs have also been found to enhance downstream training efficiency and compatibility with autoregressive language models. However, as extensive downstream applications are investigated, challenges have arisen in ensuring fair comparisons across diverse applications. To address these issues, we present a new open-source platform ESPnet-Codec, which is built on ESPnet and focuses on neural codec training and evaluation. ESPnet-Codec offers various recipes in audio, music, and speech for training and evaluation using several widely adopted codec models. Together with ESPnet-Codec, we present VERSA, a standalone evaluation toolkit, which provides a comprehensive evaluation of codec performance over 20 audio evaluation metrics. Notably, we demonstrate that ESPnet-Codec can be integrated into six ESPnet tasks, supporting diverse applications.
Abstract:Neural audio codec models are becoming increasingly important as they serve as tokenizers for audio, enabling efficient transmission or facilitating speech language modeling. The ideal neural audio codec should maintain content, paralinguistics, speaker characteristics, and audio information even at low bitrates. Recently, numerous advanced neural codec models have been proposed. However, codec models are often tested under varying experimental conditions. As a result, we introduce the Codec-SUPERB challenge at SLT 2024, designed to facilitate fair and lightweight comparisons among existing codec models and inspire advancements in the field. This challenge brings together representative speech applications and objective metrics, and carefully selects license-free datasets, sampling them into small sets to reduce evaluation computation costs. This paper presents the challenge's rules, datasets, five participant systems, results, and findings.