Abstract:Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ .
Abstract:We propose a stealthy and powerful backdoor attack on neural networks based on data poisoning (DP). In contrast to previous attacks, both the poison and the trigger in our method are stealthy. We are able to change the model's classification of samples from a source class to a target class chosen by the attacker. We do so by using a small number of poisoned training samples with nearly imperceptible perturbations, without changing their labels. At inference time, we use a stealthy perturbation added to the attacked samples as a trigger. This perturbation is crafted as a universal adversarial perturbation (UAP), and the poison is crafted using gradient alignment coupled to this trigger. Our method is highly efficient in crafting time compared to previous methods and requires only a trained surrogate model without additional retraining. Our attack achieves state-of-the-art results in terms of attack success rate while maintaining high accuracy on clean samples.
Abstract:Voice Conversion (VC) is the task of making a spoken utterance by one speaker sound as if uttered by a different speaker, while keeping other aspects like content unchanged. Current VC methods, focus primarily on spectral features like timbre, while ignoring the unique speaking style of people which often impacts prosody. In this study, we introduce a method for converting not only the timbre, but also prosodic information (i.e., rhythm and pitch changes) to those of the target speaker. The proposed approach is based on a pretrained, self-supervised, model for encoding speech to discrete units, which make it simple, effective, and easy to optimise. We consider the many-to-many setting with no paired data. We introduce a suite of quantitative and qualitative evaluation metrics for this setup, and empirically demonstrate the proposed approach is significantly superior to the evaluated baselines. Code and samples can be found under https://pages.cs.huji.ac.il/adiyoss-lab/dissc/ .
Abstract:Discovering the existence of universal adversarial perturbations had large theoretical and practical impacts on the field of adversarial learning. In the text domain, most universal studies focused on adversarial prefixes which are added to all texts. However, unlike the vision domain, adding the same perturbation to different inputs results in noticeably unnatural inputs. Therefore, we introduce a new universal adversarial setup - a universal adversarial policy, which has many advantages of other universal attacks but also results in valid texts - thus making it relevant in practice. We achieve this by learning a single search policy over a predefined set of semantics preserving text alterations, on many texts. This formulation is universal in that the policy is successful in finding adversarial examples on new texts efficiently. Our approach uses text perturbations which were extensively shown to produce natural attacks in the non-universal setup (specific synonym replacements). We suggest a strong baseline approach for this formulation which uses reinforcement learning. It's ability to generalise (from as few as 500 training texts) shows that universal adversarial patterns exist in the text domain as well.