Sid
Abstract:Foley is a key element in video production, refers to the process of adding an audio signal to a silent video while ensuring semantic and temporal alignment. In recent years, the rise of personalized content creation and advancements in automatic video-to-audio models have increased the demand for greater user control in the process. One possible approach is to incorporate text to guide audio generation. While supported by existing methods, challenges remain in ensuring compatibility between modalities, particularly when the text introduces additional information or contradicts the sounds naturally inferred from the visuals. In this work, we introduce CAFA (Controllable Automatic Foley Artist) a video-and-text-to-audio model that generates semantically and temporally aligned audio for a given video, guided by text input. CAFA is built upon a text-to-audio model and integrates video information through a modality adapter mechanism. By incorporating text, users can refine semantic details and introduce creative variations, guiding the audio synthesis beyond the expected video contextual cues. Experiments show that besides its superior quality in terms of semantic alignment and audio-visual synchronization the proposed method enable high textual controllability as demonstrated in subjective and objective evaluations.
Abstract:The field of spoken language processing is undergoing a shift from training custom-built, task-specific models toward using and optimizing spoken language models (SLMs) which act as universal speech processing systems. This trend is similar to the progression toward universal language models that has taken place in the field of (text) natural language processing. SLMs include both "pure" language models of speech -- models of the distribution of tokenized speech sequences -- and models that combine speech encoders with text language models, often including both spoken and written input or output. Work in this area is very diverse, with a range of terminology and evaluation settings. This paper aims to contribute an improved understanding of SLMs via a unifying literature survey of recent work in the context of the evolution of the field. Our survey categorizes the work in this area by model architecture, training, and evaluation choices, and describes some key challenges and directions for future work.
Abstract:Foley is a key element in video production, refers to the process of adding an audio signal to a silent video while ensuring semantic and temporal alignment. In recent years, the rise of personalized content creation and advancements in automatic video-to-audio models have increased the demand for greater user control in the process. One possible approach is to incorporate text to guide audio generation. While supported by existing methods, challenges remain in ensuring compatibility between modalities, particularly when the text introduces additional information or contradicts the sounds naturally inferred from the visuals. In this work, we introduce CAFA (Controllable Automatic Foley Artist) a video-and-text-to-audio model that generates semantically and temporally aligned audio for a given video, guided by text input. CAFA is built upon a text-to-audio model and integrates video information through a modality adapter mechanism. By incorporating text, users can refine semantic details and introduce creative variations, guiding the audio synthesis beyond the expected video contextual cues. Experiments show that besides its superior quality in terms of semantic alignment and audio-visual synchronization the proposed method enable high textual controllability as demonstrated in subjective and objective evaluations.
Abstract:Existing Speech Language Model (SLM) scaling analysis paints a bleak picture. They predict that SLMs require much more compute and data compared to text, leading some to question the feasibility of training high-quality SLMs. However, modern SLMs are often initialised from pre-trained TextLMs using speech-text interleaving to allow knowledge transfer. This raises the question - Do interleaved SLMs scale more efficiently than textless-SLMs? In this paper we answer a resounding, yes! We conduct scaling analysis of interleaved SLMs by training several dozen and analysing the scaling trends. We see that under this setup SLMs scale more efficiently with compute. Additionally, our results indicate that the scaling-dynamics are significantly different than textless-SLMs, suggesting one should allocate notably more of the compute budget for increasing model size over training tokens. We also study the role of synthetic data and TextLM model families in unlocking this potential. Results suggest, that our scaled up model achieves comparable performance with leading models on speech semantic metrics while using less compute and data than other approaches. We open source models, samples, and data - https://pages.cs.huji.ac.il/adiyoss-lab/sims.
Abstract:We introduce Slam, a recipe for training high-quality Speech Language Models (SLMs) on a single academic GPU in 24 hours. We do so through empirical analysis of model initialisation and architecture, synthetic training data, preference optimisation with synthetic data and tweaking all other components. We empirically demonstrate that this training recipe also scales well with more compute getting results on par with leading SLMs in a fraction of the compute cost. We hope these insights will make SLM training and research more accessible. In the context of SLM scaling laws, our results far outperform predicted compute optimal performance, giving an optimistic view to SLM feasibility. See code, data, models, samples at - https://pages.cs.huji.ac.il/adiyoss-lab/slamming .
Abstract:In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm.
Abstract:While most music generation models generate a mixture of stems (in mono or stereo), we propose to train a multi-stem generative model with 3 stems (bass, drums and other) that learn the musical dependencies between them. To do so, we train one specialized compression algorithm per stem to tokenize the music into parallel streams of tokens. Then, we leverage recent improvements in the task of music source separation to train a multi-stream text-to-music language model on a large dataset. Finally, thanks to a particular conditioning method, our model is able to edit bass, drums or other stems on existing or generated songs as well as doing iterative composition (e.g. generating bass on top of existing drums). This gives more flexibility in music generation algorithms and it is to the best of our knowledge the first open-source multi-stem autoregressive music generation model that can perform good quality generation and coherent source editing. Code and model weights will be released and samples are available on https://simonrouard.github.io/musicgenstem/.
Abstract:We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description. While recent advancements produce photorealistic outputs, they frequently struggle to create videos with accurate and consistent object motion, especially in multi-object scenarios. To address these limitations, we propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation. Our key innovation is the introduction of a mask-based motion trajectory as an intermediate representation, that captures both semantic object information and motion, enabling an expressive but compact representation of motion and semantics. To incorporate the learned representation in the second stage, we utilize object-level attention objectives. Specifically, we consider a spatial, per-object, masked-cross attention objective, integrating object-specific prompts into corresponding latent space regions and a masked spatio-temporal self-attention objective, ensuring frame-to-frame consistency for each object. We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art results in temporal coherence, motion realism, and text-prompt faithfulness. Additionally, we introduce \benchmark, a new challenging benchmark for single-object and multi-object I2V generation, and demonstrate our method's superiority on this benchmark. Project page is available at https://guyyariv.github.io/TTM/.
Abstract:The integration of retrieval-augmented techniques with LLMs has shown promise in improving performance across various domains. However, their utility in tasks requiring advanced reasoning, such as generating and evaluating mathematical statements and proofs, remains underexplored. This study explores the use of Lean, a programming language for writing mathematical proofs, to populate the knowledge corpus used by RAG systems. We hope for this to lay the foundation to exploring different methods of using RAGs to improve the performance of LLMs in advanced logical reasoning tasks.
Abstract:This study introduces a refined approach to Text-to-Speech (TTS) generation that significantly enhances sampling stability across languages, with a particular focus on Hebrew. By leveraging discrete semantic units with higher phonetic correlation obtained from a self-supervised model, our method addresses the inherent instability often encountered in TTS systems, especially those dealing with non-diacriticized scripts like Hebrew. Utilizing HuBERT codes, our model generates discrete representations that are optimized for TTS tasks, thereby reducing the dependency on diacritic-based text processing. This advancement not only simplifies the language modeling process but also improves the robustness and shows controllability of the speech output due to disentenglement properties of the semantic units. The inclusion of a speaker embedding in the vocoder further aids in capturing the unique vocal characteristics of the speaker, contributing to the naturalness of the synthesized speech. Our experimental results demonstrate that this approach not only maintains high performance in Hebrew but also shows adaptability to English, underscoring its effectiveness in enhancing stability in TTS systems universally. Our method, named LOTHM (Language of The Hebrew Man), outperforms existing methods in terms of stability while achieving naturalness and speaker similarity on par with previous methods, making it a compelling choice for future speech synthesis applications. Samples can be found in our page pages.cs.huji.ac.il/adiyoss-lab/LoTHM .