Abstract:This study introduces a refined approach to Text-to-Speech (TTS) generation that significantly enhances sampling stability across languages, with a particular focus on Hebrew. By leveraging discrete semantic units with higher phonetic correlation obtained from a self-supervised model, our method addresses the inherent instability often encountered in TTS systems, especially those dealing with non-diacriticized scripts like Hebrew. Utilizing HuBERT codes, our model generates discrete representations that are optimized for TTS tasks, thereby reducing the dependency on diacritic-based text processing. This advancement not only simplifies the language modeling process but also improves the robustness and shows controllability of the speech output due to disentenglement properties of the semantic units. The inclusion of a speaker embedding in the vocoder further aids in capturing the unique vocal characteristics of the speaker, contributing to the naturalness of the synthesized speech. Our experimental results demonstrate that this approach not only maintains high performance in Hebrew but also shows adaptability to English, underscoring its effectiveness in enhancing stability in TTS systems universally. Our method, named LOTHM (Language of The Hebrew Man), outperforms existing methods in terms of stability while achieving naturalness and speaker similarity on par with previous methods, making it a compelling choice for future speech synthesis applications. Samples can be found in our page pages.cs.huji.ac.il/adiyoss-lab/LoTHM .
Abstract:We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/.