Abstract:Incorporating automatically predicted human feedback into the process of training generative models has attracted substantial recent interest, while feedback at inference time has received less attention. The typical feedback at training time, i.e., preferences of choice given two samples, does not naturally transfer to the inference phase. We introduce a novel type of feedback -- caption reformulations -- and train models to mimic reformulation feedback based on human annotations. Our method does not require training the image captioning model itself, thereby demanding substantially less computational effort. We experiment with two types of reformulation feedback: first, we collect a dataset of human reformulations that correct errors in the generated captions. We find that incorporating reformulation models trained on this data into the inference phase of existing image captioning models results in improved captions, especially when the original captions are of low quality. We apply our method to non-English image captioning, a domain where robust models are less prevalent, and gain substantial improvement. Second, we apply reformulations to style transfer. Quantitative evaluations reveal state-of-the-art performance on German image captioning and English style transfer, while human validation with a detailed comparative framework exposes the specific axes of improvement.
Abstract:In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm.
Abstract:This work presents a computational approach to analyze character development along the narrative timeline. The analysis characterizes the inner and outer changes the protagonist undergoes within a narrative, and the interplay between them. We consider transcripts of Holocaust survivor testimonies as a test case, each telling the story of an individual in first-person terms. We focus on the survivor's religious trajectory, examining the evolution of their disposition toward religious belief and practice along the testimony. Clustering the resulting trajectories in the dataset, we identify common sequences in the data. Our findings highlight multiple common structures of religiosity across the narratives: in terms of belief, most present a constant disposition, while for practice, most present an oscillating structure, serving as valuable material for historical and sociological research. This work demonstrates the potential of natural language processing techniques for analyzing character evolution through thematic trajectories in narratives.
Abstract:Theory of Mind (ToM) capabilities in LLMs have recently become a central object of investigation. Cognitive science distinguishes between two steps required for ToM tasks: 1) determine whether to invoke ToM, which includes the appropriate Depth of Mentalizing (DoM), or level of recursion required to complete a task; and 2) applying the correct inference given the DoM. In this position paper, we first identify several lines of work in different communities in AI, including LLM benchmarking, ToM add-ons, ToM probing, and formal models for ToM. We argue that recent work in AI tends to focus exclusively on the second step which are typically framed as static logic problems. We conclude with suggestions for improved evaluation of ToM capabilities inspired by dynamic environments used in cognitive tasks.
Abstract:NLP research on aligning lexical representation spaces to one another has so far focused on aligning language spaces in their entirety. However, cognitive science has long focused on a local perspective, investigating whether translation equivalents truly share the same meaning or the extent that cultural and regional influences result in meaning variations. With recent technological advances and the increasing amounts of available data, the longstanding question of cross-lingual lexical alignment can now be approached in a more data-driven manner. However, developing metrics for the task requires some methodology for comparing metric efficacy. We address this gap and present a methodology for analyzing both synthetic validations and a novel naturalistic validation using lexical gaps in the kinship domain. We further propose new metrics, hitherto unexplored on this task, based on contextualized embeddings. Our analysis spans 16 diverse languages, demonstrating that there is substantial room for improvement with the use of newer language models. Our research paves the way for more accurate and nuanced cross-lingual lexical alignment methodologies and evaluation.
Abstract:Learning a model of a stochastic setting often involves learning both general structure rules and specific properties of the instance. This paper investigates the interplay between learning the general and the specific in various learning methods, with emphasis on sample efficiency. We design a framework called {\sc LeverWorlds}, which allows the generation of simple physics-inspired worlds that follow a similar generative process with different distributions, and their instances can be expressed in natural language. These worlds allow for controlled experiments to assess the sample complexity of different learning methods. We experiment with classic learning algorithms as well as Transformer language models, both with fine-tuning and In-Context Learning (ICL). Our general finding is that (1) Transformers generally succeed in the task; but (2) they are considerably less sample efficient than classic methods that make stronger assumptions about the structure, such as Maximum Likelihood Estimation and Logistic Regression. This finding is in tension with the recent tendency to use Transformers as general-purpose estimators. We propose an approach that leverages the ICL capabilities of contemporary language models to apply simple algorithms for this type of data. Our experiments show that models currently struggle with the task but show promising potential.
Abstract:Although language model scores are often treated as probabilities, their reliability as probability estimators has mainly been studied through calibration, overlooking other aspects. In particular, it is unclear whether language models produce the same value for different ways of assigning joint probabilities to word spans. Our work introduces a novel framework, ConTestS (Consistency Testing over Spans), involving statistical tests to assess score consistency across interchangeable completion and conditioning orders. We conduct experiments on post-release real and synthetic data to eliminate training effects. Our findings reveal that both Masked Language Models (MLMs) and autoregressive models exhibit inconsistent predictions, with autoregressive models showing larger discrepancies. Larger MLMs tend to produce more consistent predictions, while autoregressive models show the opposite trend. Moreover, for both model types, prediction entropies offer insights into the true word span likelihood and therefore can aid in selecting optimal decoding strategies. The inconsistencies revealed by our analysis, as well their connection to prediction entropies and differences between model types, can serve as useful guides for future research on addressing these limitations.
Abstract:We present Jamba-1.5, new instruction-tuned large language models based on our Jamba architecture. Jamba is a hybrid Transformer-Mamba mixture of experts architecture, providing high throughput and low memory usage across context lengths, while retaining the same or better quality as Transformer models. We release two model sizes: Jamba-1.5-Large, with 94B active parameters, and Jamba-1.5-Mini, with 12B active parameters. Both models are fine-tuned for a variety of conversational and instruction-following capabilties, and have an effective context length of 256K tokens, the largest amongst open-weight models. To support cost-effective inference, we introduce ExpertsInt8, a novel quantization technique that allows fitting Jamba-1.5-Large on a machine with 8 80GB GPUs when processing 256K-token contexts without loss of quality. When evaluated on a battery of academic and chatbot benchmarks, Jamba-1.5 models achieve excellent results while providing high throughput and outperforming other open-weight models on long-context benchmarks. The model weights for both sizes are publicly available under the Jamba Open Model License and we release ExpertsInt8 as open source.
Abstract:This work reimplements a recent semantic bootstrapping child-language acquisition model, which was originally designed for English, and trains it to learn a new language: Hebrew. The model learns from pairs of utterances and logical forms as meaning representations, and acquires both syntax and word meanings simultaneously. The results show that the model mostly transfers to Hebrew, but that a number of factors, including the richer morphology in Hebrew, makes the learning slower and less robust. This suggests that a clear direction for future work is to enable the model to leverage the similarities between different word forms.
Abstract:The veracity of a factoid is largely independent of the language it is written in. However, language models are inconsistent in their ability to answer the same factual question across languages. This raises questions about how LLMs represent a given fact across languages. We explore multilingual factual knowledge through two aspects: the model's ability to answer a query consistently across languages, and the ability to ''store'' answers in a shared representation for several languages. We propose a methodology to measure the extent of representation sharing across languages by repurposing knowledge editing methods. We examine LLMs with various multilingual configurations using a new multilingual dataset. We reveal that high consistency does not necessarily imply shared representation, particularly for languages with different scripts. Moreover, we find that script similarity is a dominant factor in representation sharing. Finally, we observe that if LLMs could fully share knowledge across languages, their accuracy in their best-performing language could benefit an increase of up to 150\% on average. These findings highlight the need for improved multilingual knowledge representation in LLMs and suggest a path for the development of more robust and consistent multilingual LLMs.