This work presents the task of unsupervised location mapping, which seeks to map the trajectory of an individual narrative on a spatial map of locations in which a large set of narratives take place. Despite the fundamentality and generality of the task, very little work addressed the spatial mapping of narrative texts. The task consists of two parts: (1) inducing a ``map'' with the locations mentioned in a set of texts, and (2) extracting a trajectory from a single narrative and positioning it on the map. Following recent advances in increasing the context length of large language models, we propose a pipeline for this task in a completely unsupervised manner without predefining the set of labels. We test our method on two different domains: (1) Holocaust testimonies and (2) Lake District writing, namely multi-century literature on travels in the English Lake District. We perform both intrinsic and extrinsic evaluations for the task, with encouraging results, thereby setting a benchmark and evaluation practices for the task, as well as highlighting challenges.