Abstract:Rumours in online social media pose significant risks to modern society, motivating the need for better understanding of how they develop. We focus specifically on the interface between emotion and rumours in threaded discourses, building on the surprisingly sparse literature on the topic which has largely focused on emotions within the original rumour posts themselves, and largely overlooked the comparative differences between rumours and non-rumours. In this work, we provide a comprehensive analytical emotion framework, contrasting rumour and non-rumour cases using existing NLP datasets to further understand the emotion dynamics within rumours. Our framework reveals several findings: rumours exhibit more negative sentiment and emotions, including anger, fear and pessimism, while non-rumours evoke more positive emotions; emotions are contagious in online interactions, with rumours facilitate negative emotions and non-rumours foster positive emotions; and based on causal analysis, surprise acts as a bridge between rumours and other emotions, pessimism is driven by sadness and fear, optimism by joy and love.
Abstract:Large language models (LLMs) are increasingly deployed with hierarchical instruction schemes, where certain instructions (e.g., system-level directives) are expected to take precedence over others (e.g., user messages). Yet, we lack a systematic understanding of how effectively these hierarchical control mechanisms work. We introduce a systematic evaluation framework based on constraint prioritization to assess how well LLMs enforce instruction hierarchies. Our experiments across six state-of-the-art LLMs reveal that models struggle with consistent instruction prioritization, even for simple formatting conflicts. We find that the widely-adopted system/user prompt separation fails to establish a reliable instruction hierarchy, and models exhibit strong inherent biases toward certain constraint types regardless of their priority designation. While controlled prompt engineering and model fine-tuning show modest improvements, our results indicate that instruction hierarchy enforcement is not robustly realized, calling for deeper architectural innovations beyond surface-level modifications.
Abstract:Uncertainty quantification (UQ) is a prominent approach for eliciting truthful answers from large language models (LLMs). To date, information-based and consistency-based UQ have been the dominant UQ methods for text generation via LLMs. Density-based methods, despite being very effective for UQ in text classification with encoder-based models, have not been very successful with generative LLMs. In this work, we adapt Mahalanobis Distance (MD) - a well-established UQ technique in classification tasks - for text generation and introduce a new supervised UQ method. Our method extracts token embeddings from multiple layers of LLMs, computes MD scores for each token, and uses linear regression trained on these features to provide robust uncertainty scores. Through extensive experiments on eleven datasets, we demonstrate that our approach substantially improves over existing UQ methods, providing accurate and computationally efficient uncertainty scores for both sequence-level selective generation and claim-level fact-checking tasks. Our method also exhibits strong generalization to out-of-domain data, making it suitable for a wide range of LLM-based applications.
Abstract:Large language models (LLMs) are known to have the potential to generate harmful content, posing risks to users. While significant progress has been made in developing taxonomies for LLM risks and safety evaluation prompts, most studies have focused on monolingual contexts, primarily in English. However, language- and region-specific risks in bilingual contexts are often overlooked, and core findings can diverge from those in monolingual settings. In this paper, we introduce Qorgau, a novel dataset specifically designed for safety evaluation in Kazakh and Russian, reflecting the unique bilingual context in Kazakhstan, where both Kazakh (a low-resource language) and Russian (a high-resource language) are spoken. Experiments with both multilingual and language-specific LLMs reveal notable differences in safety performance, emphasizing the need for tailored, region-specific datasets to ensure the responsible and safe deployment of LLMs in countries like Kazakhstan. Warning: this paper contains example data that may be offensive, harmful, or biased.
Abstract:Evaluating large language models' (LLMs) long-context understanding capabilities remains challenging. We present SCALAR (Scientific Citation-based Live Assessment of Long-context Academic Reasoning), a novel benchmark that leverages academic papers and their citation networks. SCALAR features automatic generation of high-quality ground truth labels without human annotation, controllable difficulty levels, and a dynamic updating mechanism that prevents data contamination. Using ICLR 2025 papers, we evaluate 8 state-of-the-art LLMs, revealing key insights about their capabilities and limitations in processing long scientific documents across different context lengths and reasoning types. Our benchmark provides a reliable and sustainable way to track progress in long-context understanding as LLM capabilities evolve.
Abstract:Recent advances in large language models (LLMs) have shown that they can answer questions requiring complex reasoning. However, their ability to identify and respond to text containing logical fallacies or deliberately misleading premises remains less studied. To address this gap, we introduce RuozhiBench, a bilingual dataset comprising 677 carefully curated questions that contain various forms of deceptive reasoning, meticulously crafted through extensive human effort and expert review. In a comprehensive evaluation of 17 LLMs from 5 Series over RuozhiBench using both open-ended and two-choice formats, we conduct extensive analyses on evaluation protocols and result patterns. Despite their high scores on conventional benchmarks, these models showed limited ability to detect and reason correctly about logical fallacies, with even the best-performing model, Claude-3-haiku, achieving only 62% accuracy compared to the human of more than 90%.
Abstract:Multilingual large language models (MLLMs) are able to leverage in-context learning (ICL) to achieve high performance by leveraging cross-lingual knowledge transfer without parameter updates. However, their effectiveness is highly sensitive to example selection, particularly in multilingual settings. Based on the findings of existing work, three key factors influence multilingual ICL: (1) semantic similarity, (2) linguistic alignment, and (3) language-specific performance. However, existing approaches address these factors independently, without explicitly disentangling their combined impact, leaving optimal example selection underexplored. To address this gap, we propose balanced multi-factor ICL (\textbf{BMF-ICL}), a method that quantifies and optimally balances these factors for improved example selection. Experiments on mCSQA and TYDI across four MLLMs demonstrate that BMF-ICL outperforms existing methods. Further analysis highlights the importance of incorporating all three factors and the importance of selecting examples from multiple languages.
Abstract:Recent cognitive modeling studies have reported that larger language models (LMs) exhibit a poorer fit to human reading behavior, leading to claims of their cognitive implausibility. In this paper, we revisit this argument through the lens of mechanistic interpretability and argue that prior conclusions were skewed by an exclusive focus on the final layers of LMs. Our analysis reveals that next-word probabilities derived from internal layers of larger LMs align with human sentence processing data as well as, or better than, those from smaller LMs. This alignment holds consistently across behavioral (self-paced reading times, gaze durations, MAZE task processing times) and neurophysiological (N400 brain potentials) measures, challenging earlier mixed results and suggesting that the cognitive plausibility of larger LMs has been underestimated. Furthermore, we first identify an intriguing relationship between LM layers and human measures: earlier layers correspond more closely with fast gaze durations, while later layers better align with relatively slower signals such as N400 potentials and MAZE processing times. Our work opens new avenues for interdisciplinary research at the intersection of mechanistic interpretability and cognitive modeling.
Abstract:Human label variation (HLV) challenges the standard assumption that an example has a single ground truth, instead embracing the natural variation in human labelling to train and evaluate models. While various training methods and metrics for HLV have been proposed, there has been no systematic meta-evaluation of HLV evaluation metrics, contributing to the lack of clarity in the best HLV training method. We propose new evaluation metrics and training methods and empirically meta-evaluate HLV evaluation metrics. We find that training on either disaggregated annotations or soft labels often performs best across metrics, and that our proposed soft metric correlates best with human preference.
Abstract:To address this gap, we introduce Libra-Leaderboard, a comprehensive framework designed to rank LLMs through a balanced evaluation of performance and safety. Combining a dynamic leaderboard with an interactive LLM arena, Libra-Leaderboard encourages the joint optimization of capability and safety. Unlike traditional approaches that average performance and safety metrics, Libra-Leaderboard uses a distance-to-optimal-score method to calculate the overall rankings. This approach incentivizes models to achieve a balance rather than excelling in one dimension at the expense of some other ones. In the first release, Libra-Leaderboard evaluates 26 mainstream LLMs from 14 leading organizations, identifying critical safety challenges even in state-of-the-art models.