MBZUAI, Tohoku University, RIKEN
Abstract:Recent cognitive modeling studies have reported that larger language models (LMs) exhibit a poorer fit to human reading behavior, leading to claims of their cognitive implausibility. In this paper, we revisit this argument through the lens of mechanistic interpretability and argue that prior conclusions were skewed by an exclusive focus on the final layers of LMs. Our analysis reveals that next-word probabilities derived from internal layers of larger LMs align with human sentence processing data as well as, or better than, those from smaller LMs. This alignment holds consistently across behavioral (self-paced reading times, gaze durations, MAZE task processing times) and neurophysiological (N400 brain potentials) measures, challenging earlier mixed results and suggesting that the cognitive plausibility of larger LMs has been underestimated. Furthermore, we first identify an intriguing relationship between LM layers and human measures: earlier layers correspond more closely with fast gaze durations, while later layers better align with relatively slower signals such as N400 potentials and MAZE processing times. Our work opens new avenues for interdisciplinary research at the intersection of mechanistic interpretability and cognitive modeling.
Abstract:According to the stages-of-inference hypothesis, early layers of language models map their subword-tokenized input, which does not necessarily correspond to a linguistically meaningful segmentation, to more meaningful representations that form the model's ``inner vocabulary''. Prior analysis of this detokenization stage has predominantly relied on probing and interventions such as path patching, which involve selecting particular inputs, choosing a subset of components that will be patched, and then observing changes in model behavior. Here, we show that several important aspects of the detokenization stage can be understood purely by analyzing model weights, without performing any model inference steps. Specifically, we introduce an analytical decomposition of first-layer attention in GPT-2. Our decomposition yields interpretable terms that quantify the relative contributions of position-related, token-related, and mixed effects. By focusing on terms in this decomposition, we discover weight-based explanations of attention bias toward close tokens and attention for detokenization.
Abstract:Short-reading comprehension questions help students understand text structure but lack effective feedback. Students struggle to identify and correct errors, while manual feedback creation is labor-intensive. This highlights the need for automated feedback linking responses to a scoring rubric for deeper comprehension. Despite advances in Natural Language Processing (NLP), research has focused on automatic grading, with limited work on feedback generation. To address this, we propose a system that generates feedback for student responses. Our contributions are twofold. First, we introduce the first system for feedback on short-answer reading comprehension. These answers are derived from the text, requiring structural understanding. We propose an "answer diagnosis graph," integrating the text's logical structure with feedback templates. Using this graph and NLP techniques, we estimate students' comprehension and generate targeted feedback. Second, we evaluate our feedback through an experiment with Japanese high school students (n=39). They answered two 70-80 word questions and were divided into two groups with minimal academic differences. One received a model answer, the other system-generated feedback. Both re-answered the questions, and we compared score changes. A questionnaire assessed perceptions and motivation. Results showed no significant score improvement between groups, but system-generated feedback helped students identify errors and key points in the text. It also significantly increased motivation. However, further refinement is needed to enhance text structure understanding.
Abstract:This study investigates the internal reasoning mechanism of language models during symbolic multi-step reasoning, motivated by the question of whether chain-of-thought (CoT) outputs are faithful to the model's internals. Specifically, we inspect when they internally determine their answers, particularly before or after CoT begins, to determine whether models follow a post-hoc "think-to-talk" mode or a step-by-step "talk-to-think" mode of explanation. Through causal probing experiments in controlled arithmetic reasoning tasks, we found systematic internal reasoning patterns across models; for example, simple subproblems are solved before CoT begins, and more complicated multi-hop calculations are performed during CoT.
Abstract:This paper investigates whether large language models (LLMs) utilize numerical attributes encoded in a low-dimensional subspace of the embedding space when answering logical comparison questions (e.g., Was Cristiano born before Messi?). We first identified these subspaces using partial least squares regression, which effectively encodes the numerical attributes associated with the entities in comparison prompts. Further, we demonstrate causality by intervening in these subspaces to manipulate hidden states, thereby altering the LLM's comparison outcomes. Experimental results show that our findings hold for different numerical attributes, indicating that LLMs utilize the linearly encoded information for numerical reasoning.
Abstract:This paper introduces repetition neurons, regarded as skill neurons responsible for the repetition problem in text generation tasks. These neurons are progressively activated more strongly as repetition continues, indicating that they perceive repetition as a task to copy the previous context repeatedly, similar to in-context learning. We identify these repetition neurons by comparing activation values before and after the onset of repetition in texts generated by recent pre-trained language models. We analyze the repetition neurons in three English and one Japanese pre-trained language models and observe similar patterns across them.
Abstract:Entity tracking is essential for complex reasoning. To perform in-context entity tracking, language models (LMs) must bind an entity to its attribute (e.g., bind a container to its content) to recall attribute for a given entity. For example, given a context mentioning ``The coffee is in Box Z, the stone is in Box M, the map is in Box H'', to infer ``Box Z contains the coffee'' later, LMs must bind ``Box Z'' to ``coffee''. To explain the binding behaviour of LMs, Feng and Steinhardt (2023) introduce a Binding ID mechanism and state that LMs use a abstract concept called Binding ID (BI) to internally mark entity-attribute pairs. However, they have not directly captured the BI determinant information from entity activations. In this work, we provide a novel view of the Binding ID mechanism by localizing the prototype of BI information. Specifically, we discover that there exists a low-rank subspace in the hidden state (or activation) of LMs, that primarily encodes the order of entity and attribute and which is used as the prototype of BI to causally determine the binding. To identify this subspace, we choose principle component analysis as our first attempt and it is empirically proven to be effective. Moreover, we also discover that when editing representations along directions in the subspace, LMs tend to bind a given entity to other attributes accordingly. For example, by patching activations along the BI encoding direction we can make the LM to infer ``Box Z contains the stone'' and ``Box Z contains the map''.
Abstract:The complexities of chats pose significant challenges for machine translation models. Recognizing the need for a precise evaluation metric to address the issues of chat translation, this study introduces Multidimensional Quality Metrics for Chat Translation (MQM-Chat). Through the experiments of five models using MQM-Chat, we observed that all models generated certain fundamental errors, while each of them has different shortcomings, such as omission, overly correcting ambiguous source content, and buzzword issues, resulting in the loss of stylized information. Our findings underscore the effectiveness of MQM-Chat in evaluating chat translation, emphasizing the importance of stylized content and dialogue consistency for future studies.
Abstract:The complexities of chats pose significant challenges for machine translation models. Recognizing the need for a precise evaluation metric to address the issues of chat translation, this study introduces Multidimensional Quality Metrics for Chat Translation (MQM-Chat). Through the experiments of five models using MQM-Chat, we observed that all models generated certain fundamental errors, while each of them has different shortcomings, such as omission, overly correcting ambiguous source content, and buzzword issues, resulting in the loss of stylized information. Our findings underscore the effectiveness of MQM-Chat in evaluating chat translation, emphasizing the importance of stylized content and dialogue consistency for future studies.
Abstract:Automated Short Answer Scoring (SAS) is the task of automatically scoring a given input to a prompt based on rubrics and reference answers. Although SAS is useful in real-world applications, both rubrics and reference answers differ between prompts, thus requiring a need to acquire new data and train a model for each new prompt. Such requirements are costly, especially for schools and online courses where resources are limited and only a few prompts are used. In this work, we attempt to reduce this cost through a two-phase approach: train a model on existing rubrics and answers with gold score signals and finetune it on a new prompt. Specifically, given that scoring rubrics and reference answers differ for each prompt, we utilize key phrases, or representative expressions that the answer should contain to increase scores, and train a SAS model to learn the relationship between key phrases and answers using already annotated prompts (i.e., cross-prompts). Our experimental results show that finetuning on existing cross-prompt data with key phrases significantly improves scoring accuracy, especially when the training data is limited. Finally, our extensive analysis shows that it is crucial to design the model so that it can learn the task's general property.