Abstract:In spite of the recent progress in speech processing, the majority of world languages and dialects remain uncovered. This situation only furthers an already wide technological divide, thereby hindering technological and socioeconomic inclusion. This challenge is largely due to the absence of datasets that can empower diverse speech systems. In this paper, we seek to mitigate this obstacle for a number of Arabic dialects by presenting Casablanca, a large-scale community-driven effort to collect and transcribe a multi-dialectal Arabic dataset. The dataset covers eight dialects: Algerian, Egyptian, Emirati, Jordanian, Mauritanian, Moroccan, Palestinian, and Yemeni, and includes annotations for transcription, gender, dialect, and code-switching. We also develop a number of strong baselines exploiting Casablanca. The project page for Casablanca is accessible at: www.dlnlp.ai/speech/casablanca.
Abstract:In the realm of computer vision, the perception and reconstruction of the 3D world through vision signals heavily rely on camera intrinsic parameters, which have long been a subject of intense research within the community. In practical applications, without a strong scene geometry prior like the Manhattan World assumption or special artificial calibration patterns, monocular focal length estimation becomes a challenging task. In this paper, we propose a method for monocular focal length estimation using category-level object priors. Based on two well-studied existing tasks: monocular depth estimation and category-level object canonical representation learning, our focal solver takes depth priors and object shape priors from images containing objects and estimates the focal length from triplets of correspondences in closed form. Our experiments on simulated and real world data demonstrate that the proposed method outperforms the current state-of-the-art, offering a promising solution to the long-standing monocular focal length estimation problem.
Abstract:The foundation model paradigm leverages a shared foundation model to achieve state-of-the-art (SOTA) performance for various tasks, requiring minimal downstream-specific modeling and data annotation. This approach has proven crucial in the field of Natural Language Processing (NLP). However, the speech processing community lacks a similar setup to explore the paradigm systematically. In this work, we establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the paradigm for speech. We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads. Combining our results with community submissions, we verify that the foundation model paradigm is promising for speech, and our multi-tasking framework is simple yet effective, as the best-performing foundation model shows competitive generalizability across most SUPERB tasks. For reproducibility and extensibility, we have developed a long-term maintained platform that enables deterministic benchmarking, allows for result sharing via an online leaderboard, and promotes collaboration through a community-driven benchmark database to support new development cycles. Finally, we conduct a series of analyses to offer an in-depth understanding of SUPERB and speech foundation models, including information flows across tasks inside the models, the correctness of the weighted-sum benchmarking protocol and the statistical significance and robustness of the benchmark.
Abstract:We introduce VoiceCraft, a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on audiobooks, internet videos, and podcasts. VoiceCraft employs a Transformer decoder architecture and introduces a token rearrangement procedure that combines causal masking and delayed stacking to enable generation within an existing sequence. On speech editing tasks, VoiceCraft produces edited speech that is nearly indistinguishable from unedited recordings in terms of naturalness, as evaluated by humans; for zero-shot TTS, our model outperforms prior SotA models including VALLE and the popular commercial model XTTS-v2. Crucially, the models are evaluated on challenging and realistic datasets, that consist of diverse accents, speaking styles, recording conditions, and background noise and music, and our model performs consistently well compared to other models and real recordings. In particular, for speech editing evaluation, we introduce a high quality, challenging, and realistic dataset named RealEdit. We encourage readers to listen to the demos at https://jasonppy.github.io/VoiceCraft_web.
Abstract:Multimodal large language models (MLLMs) have proven effective in a wide range of tasks requiring complex reasoning and linguistic comprehension. However, due to a lack of high-quality multimodal resources in languages other than English, success of MLLMs remains relatively limited to English-based settings. This poses significant challenges in developing comparable models for other languages, including even those with large speaker populations such as Arabic. To alleviate this challenge, we introduce a comprehensive family of Arabic MLLMs, dubbed \textit{Peacock}, with strong vision and language capabilities. Through comprehensive qualitative and quantitative analysis, we demonstrate the solid performance of our models on various visual reasoning tasks and further show their emerging dialectal potential. Additionally, we introduce ~\textit{Henna}, a new benchmark specifically designed for assessing MLLMs on aspects related to Arabic culture, setting the first stone for culturally-aware Arabic MLLMs.The GitHub repository for the \textit{Peacock} project is available at \url{https://github.com/UBC-NLP/peacock}.
Abstract:Spoken Question Answering (SQA) is essential for machines to reply to user's question by finding the answer span within a given spoken passage. SQA has been previously achieved without ASR to avoid recognition errors and Out-of-Vocabulary (OOV) problems. However, the real-world problem of Open-domain SQA (openSQA), in which the machine needs to first retrieve passages that possibly contain the answer from a spoken archive in addition, was never considered. This paper proposes the first known end-to-end framework, Speech Dense Passage Retriever (SpeechDPR), for the retrieval component of the openSQA problem. SpeechDPR learns a sentence-level semantic representation by distilling knowledge from the cascading model of unsupervised ASR (UASR) and text dense retriever (TDR). No manually transcribed speech data is needed. Initial experiments showed performance comparable to the cascading model of UASR and TDR, and significantly better when UASR was poor, verifying this approach is more robust to speech recognition errors.
Abstract:Although image captioning has a vast array of applications, it has not reached its full potential in languages other than English. Arabic, for instance, although the native language of more than 400 million people, remains largely underrepresented in this area. This is due to the lack of labeled data and powerful Arabic generative models. We alleviate this issue by presenting a novel vision-language model dedicated to Arabic, dubbed \textit{Violet}. Our model is based on a vision encoder and a Gemini text decoder that maintains generation fluency while allowing fusion between the vision and language components. To train our model, we introduce a new method for automatically acquiring data from available English datasets. We also manually prepare a new dataset for evaluation. \textit{Violet} performs sizeably better than our baselines on all of our evaluation datasets. For example, it reaches a CIDEr score of $61.2$ on our manually annotated dataset and achieves an improvement of $13$ points on Flickr8k.
Abstract:Data-driven unit discovery in self-supervised learning (SSL) of speech has embarked on a new era of spoken language processing. Yet, the discovered units often remain in phonetic space, limiting the utility of SSL representations. Here, we demonstrate that a syllabic organization emerges in learning sentence-level representation of speech. In particular, we adopt "self-distillation" objective to fine-tune the pretrained HuBERT with an aggregator token that summarizes the entire sentence. Without any supervision, the resulting model draws definite boundaries in speech, and the representations across frames show salient syllabic structures. We demonstrate that this emergent structure largely corresponds to the ground truth syllables. Furthermore, we propose a new benchmark task, Spoken Speech ABX, for evaluating sentence-level representation of speech. When compared to previous models, our model outperforms in both unsupervised syllable discovery and learning sentence-level representation. Together, we demonstrate that the self-distillation of HuBERT gives rise to syllabic organization without relying on external labels or modalities, and potentially provides novel data-driven units for spoken language modeling.
Abstract:Self-Supervised Learning (SSL) based models of speech have shown remarkable performance on a range of downstream tasks. These state-of-the-art models have remained blackboxes, but many recent studies have begun "probing" models like HuBERT, to correlate their internal representations to different aspects of speech. In this paper, we show "inference of articulatory kinematics" as fundamental property of SSL models, i.e., the ability of these models to transform acoustics into the causal articulatory dynamics underlying the speech signal. We also show that this abstraction is largely overlapping across the language of the data used to train the model, with preference to the language with similar phonological system. Furthermore, we show that with simple affine transformations, Acoustic-to-Articulatory inversion (AAI) is transferrable across speakers, even across genders, languages, and dialects, showing the generalizability of this property. Together, these results shed new light on the internals of SSL models that are critical to their superior performance, and open up new avenues into language-agnostic universal models for speech engineering, that are interpretable and grounded in speech science.
Abstract:The 2023 Multilingual Speech Universal Performance Benchmark (ML-SUPERB) Challenge expands upon the acclaimed SUPERB framework, emphasizing self-supervised models in multilingual speech recognition and language identification. The challenge comprises a research track focused on applying ML-SUPERB to specific multilingual subjects, a Challenge Track for model submissions, and a New Language Track where language resource researchers can contribute and evaluate their low-resource language data in the context of the latest progress in multilingual speech recognition. The challenge garnered 12 model submissions and 54 language corpora, resulting in a comprehensive benchmark encompassing 154 languages. The findings indicate that merely scaling models is not the definitive solution for multilingual speech tasks, and a variety of speech/voice types present significant challenges in multilingual speech processing.