Abstract:Spoken dialogue modeling introduces unique challenges beyond text-based language modeling, demanding robust turn-taking, backchanneling, and real-time interaction. Although most Spoken Dialogue Models (SDMs) rely on half-duplex processing (handling speech one turn at a time), emerging full-duplex SDMs can listen and speak simultaneously, enabling more natural and engaging conversations. However, current evaluations of such models remain limited, often focusing on turn-based metrics or high-level corpus analyses (e.g., turn gaps, pauses). To address this gap, we present Full-Duplex-Bench, a new benchmark that systematically evaluates key conversational behaviors: pause handling, backchanneling, turn-taking, and interruption management. Our framework uses automatic metrics for consistent and reproducible assessments of SDMs' interactive performance. By offering an open and standardized evaluation benchmark, we aim to advance spoken dialogue modeling and encourage the development of more interactive and natural dialogue systems.
Abstract:The LLM-as-a-judge paradigm uses large language models (LLMs) for automated text evaluation, where a numerical assessment is assigned by an LLM to the input text following scoring rubrics. Existing methods for LLM-as-a-judge use cross-entropy (CE) loss for fine-tuning, which neglects the numeric nature of score prediction. Recent work addresses numerical prediction limitations of LLM fine-tuning through regression-aware fine-tuning, which, however, does not consider chain-of-thought (CoT) reasoning for score prediction. In this paper, we introduce TRACT (Two-stage Regression-Aware fine-tuning with CoT), a method combining CoT reasoning with regression-aware training. TRACT consists of two stages: first, seed LLM is fine-tuned to generate CoTs, which serve as supervision for the second stage fine-tuning. The training objective of TRACT combines the CE loss for learning the CoT reasoning capabilities, and the regression-aware loss for the score prediction. Experiments across four LLM-as-a-judge datasets and two LLMs show that TRACT significantly outperforms existing methods. Extensive ablation studies validate the importance of each component in TRACT.
Abstract:Knowing when to answer or refuse is crucial for safe and reliable decision-making language agents. Although prior work has introduced refusal strategies to boost LMs' reliability, how these models adapt their decisions to different risk levels remains underexplored. We formalize the task of risk-aware decision-making, expose critical weaknesses in existing LMs, and propose skill-decomposition solutions to mitigate them. Our findings show that even cutting-edge LMs--both regular and reasoning models--still require explicit prompt chaining to handle the task effectively, revealing the challenges that must be overcome to achieve truly autonomous decision-making agents.
Abstract:Large vision-language models (LVLMs) perform outstandingly across various multimodal tasks. However, their ability to evaluate generated content remains limited, and training vision-language reward models (VLRMs) with preference data is computationally expensive. This paper explores a training-free alternative by merging text-based reward models (RMs) with LVLMs to create VLRMs. Our approach shows that integrating these models leads to improved performance over LVLMs' scoring and text-based RMs, offering an efficient method for incorporating textual preferences into LVLMs.
Abstract:Speech representation models are highly effective at extracting general features for various tasks. While fine-tuning can enhance these representations for specific applications, it often compromises their generalization ability. To address this challenge, we propose Speech-FT, a fine-tuning strategy for speech representation models that leverages model merging to preserve generalization ability while still benefiting from fine-tuning. Speech-FT is effective across different fine-tuning scenarios and is compatible with various types of speech representation models, providing a versatile solution. Speech-FT offers an efficient and practical approach to further improving general speech representations after pre-training.
Abstract:Recent advancements in controllable expressive speech synthesis, especially in text-to-speech (TTS) models, have allowed for the generation of speech with specific styles guided by textual descriptions, known as style prompts. While this development enhances the flexibility and naturalness of synthesized speech, there remains a significant gap in understanding how these models handle vague or abstract style prompts. This study investigates the potential gender bias in how models interpret occupation-related prompts, specifically examining their responses to instructions like "Act like a nurse". We explore whether these models exhibit tendencies to amplify gender stereotypes when interpreting such prompts. Our experimental results reveal the model's tendency to exhibit gender bias for certain occupations. Moreover, models of different sizes show varying degrees of this bias across these occupations.
Abstract:We present BreezyVoice, a Text-to-Speech (TTS) system specifically adapted for Taiwanese Mandarin, highlighting phonetic control abilities to address the unique challenges of polyphone disambiguation in the language. Building upon CosyVoice, we incorporate a $S^{3}$ tokenizer, a large language model (LLM), an optimal-transport conditional flow matching model (OT-CFM), and a grapheme to phoneme prediction model, to generate realistic speech that closely mimics human utterances. Our evaluation demonstrates BreezyVoice's superior performance in both general and code-switching contexts, highlighting its robustness and effectiveness in generating high-fidelity speech. Additionally, we address the challenges of generalizability in modeling long-tail speakers and polyphone disambiguation. Our approach significantly enhances performance and offers valuable insights into the workings of neural codec TTS systems.
Abstract:Maintaining consistent model performance across domains is a fundamental challenge in machine learning. While recent work has explored using LLM-generated data for fine-tuning, its impact on cross-domain generalization remains poorly understood. In this paper, we present a systematic analysis revealing that fine-tuning with LLM-generated data not only improves target task performance but also reduces out-of-domain (OOD) degradation compared to fine-tuning with ground truth data. Through analyzing the data sequence in tasks of various domains, we demonstrate that this enhanced OOD robustness stems from a reduced prevalence of high perplexity tokens in LLM-generated sequences. Following this hypothesis we showed that masking high perplexity tokens in ground truth training data also achieves similar OOD preservation comparable to using LLM-generated data. Extensive experiments across diverse model architectures and scales, including Gemma2-2B, Mistral-7B and Llama3-8B, corroborate the consistency of our findings. To the best of our knowledge, this work provides the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data, offering valuable insights for developing more robust fine-tuning strategies.
Abstract:With the rapid advancement of codec-based speech generation (CoSG) systems, creating fake speech that mimics an individual's identity and spreads misinformation has become remarkably easy. Addressing the risks posed by such deepfake speech has attracted significant attention. However, most existing studies focus on detecting fake data generated by traditional speech generation models. Research on detecting fake speech generated by CoSG systems remains limited and largely unexplored. In this paper, we introduce CodecFake-Omni, a large-scale dataset specifically designed to advance the study of neural codec-based deepfake speech (CodecFake) detection and promote progress within the anti-spoofing community. To the best of our knowledge, CodecFake-Omni is the largest dataset of its kind till writing this paper, encompassing the most diverse range of codec architectures. The training set is generated through re-synthesis using nearly all publicly available open-source 31 neural audio codec models across 21 different codec families (one codec family with different configurations will result in multiple different codec models). The evaluation set includes web-sourced data collected from websites generated by 17 advanced CoSG models with eight codec families. Using this large-scale dataset, we reaffirm our previous findings that anti-spoofing models trained on traditional spoofing datasets generated by vocoders struggle to detect synthesized speech from current CoSG systems. Additionally, we propose a comprehensive neural audio codec taxonomy, categorizing neural audio codecs by their root components: vector quantizer, auxiliary objectives, and decoder types, with detailed explanations and representative examples for each. Using this comprehensive taxonomy, we conduct stratified analysis to provide valuable insights for future CodecFake detection research.
Abstract:Previous research has shown that the principal singular vectors of a pre-trained model's weight matrices capture critical knowledge. In contrast, those associated with small singular values may contain noise or less reliable information. As a result, the LoRA-based parameter-efficient fine-tuning (PEFT) approach, which does not constrain the use of the spectral space, may not be effective for tasks that demand high representation capacity. In this study, we enhance existing PEFT techniques by incorporating the spectral information of pre-trained weight matrices into the fine-tuning process. We investigate spectral adaptation strategies with a particular focus on the additive adjustment of top singular vectors. This is accomplished by applying singular value decomposition (SVD) to the pre-trained weight matrices and restricting the fine-tuning within the top spectral space. Extensive speaker verification experiments on VoxCeleb1 and CN-Celeb1 demonstrate enhanced tuning performance with the proposed approach. Code is released at https://github.com/lizhepolyu/SpectralFT.