Abstract:This technical report presents our initial attempt to build a spoken large language model (LLM) for Taiwanese Mandarin, specifically tailored to enable real-time, speech-to-speech interaction in multi-turn conversations. Our end-to-end model incorporates a decoder-only transformer architecture and aims to achieve seamless interaction while preserving the conversational flow, including full-duplex capabilities allowing simultaneous speaking and listening. The paper also details the training process, including data preparation with synthesized dialogues and adjustments for real-time interaction. We also developed a platform to evaluate conversational fluency and response coherence in multi-turn dialogues. We hope the release of the report can contribute to the future development of spoken LLMs in Taiwanese Mandarin.
Abstract:Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Abstract:There have been many studies on analyzing self-supervised speech Transformers, in particular, with layer-wise analysis. It is, however, desirable to have an approach that can pinpoint exactly a subset of neurons that is responsible for a particular property of speech, being amenable to model pruning and model editing. In this work, we identify a set of property neurons in the feedforward layers of Transformers to study how speech-related properties, such as phones, gender, and pitch, are stored. When removing neurons of a particular property (a simple form of model editing), the respective downstream performance significantly degrades, showing the importance of the property neurons. We apply this approach to pruning the feedforward layers in Transformers, where most of the model parameters are. We show that protecting property neurons during pruning is significantly more effective than norm-based pruning.
Abstract:Speech Integrated Large Language Models (SILLMs) combine large language models with speech perception to perform diverse tasks, such as emotion recognition to speaker verification, demonstrating universal audio understanding capability. However, these models may amplify biases present in training data, potentially leading to biased access to information for marginalized groups. This work introduces a curated spoken bias evaluation toolkit and corresponding dataset. We evaluate gender bias in SILLMs across four semantic-related tasks: speech-to-text translation (STT), spoken coreference resolution (SCR), spoken sentence continuation (SSC), and spoken question answering (SQA). Our analysis reveals that bias levels are language-dependent and vary with different evaluation methods. Our findings emphasize the necessity of employing multiple approaches to comprehensively assess biases in SILLMs, providing insights for developing fairer SILLM systems.
Abstract:Self-supervised speech models have shown to be useful for various tasks, but their large size limits the use in devices with low computing power and memory. In this work, we explore early exit, an approach for reducing latency by exiting the forward process of a network early. Most approaches of early exit need a separate early exit model for each task, with some even requiring fine-tuning of the entire pretrained model. We introduce Data Adaptive Self-Supervised Early Exit (DAISY), an approach that decides when to exit based on the self-supervised loss, eliminating the need for multiple round of training and fine-tuning. DAISY matches the performance of HuBERT on the MiniSUPERB benchmark, but with much faster inference times. Our analysis on the adaptivity of DAISY shows that the model exits early (using fewer layers) on clean data while exits late (using more layers) on noisy data, dynamically adjusting the computational cost of inference based on the noise level of each sample.
Abstract:Self-supervised learning (SSL) speech models have achieved remarkable performance in various tasks, yet the biased outcomes, especially affecting marginalized groups, raise significant concerns. Social bias refers to the phenomenon where algorithms potentially amplify disparate properties between social groups present in the data used for training. Bias in SSL models can perpetuate injustice by automating discriminatory patterns and reinforcing inequitable systems. This work reveals that prevalent SSL models inadvertently acquire biased associations. We probe how various factors, such as model architecture, size, and training methodologies, influence the propagation of social bias within these models. Finally, we explore the efficacy of debiasing SSL models through regularization techniques, specifically via model compression. Our findings reveal that employing techniques such as row-pruning and training wider, shallower models can effectively mitigate social bias within SSL model.
Abstract:Self-supervised models have had great success in learning speech representations that can generalize to various downstream tasks. HuBERT, in particular, achieves strong performance while being relatively simple in training compared to others. The original experimental setting is computationally extensive, hindering the reproducibility of the models. It is also unclear why certain design decisions are made, such as the ad-hoc loss function, and whether these decisions have an impact on the learned representations. We propose MelHuBERT, a simplified version of HuBERT that takes Mel spectrograms as input, significantly reducing computation and memory consumption. We study several aspects of training, including the loss function, multi-stage training, and streaming options. Our result is a efficient yet performant model that can be trained on a single GPU.
Abstract:Despite the success of Transformers in self-supervised learning with applications to various downstream tasks, the computational cost of training and inference remains a major challenge for applying these models to a wide spectrum of devices. Several isolated attempts have been made to compress Transformers, prior to applying them to downstream tasks. In this work, we aim to provide context for the isolated results, studying several commonly used compression techniques, including weight pruning, head pruning, low-rank approximation, and knowledge distillation. We report wall-clock time, the number of parameters, and the number of multiply-accumulate operations for these techniques, charting the landscape of compressing Transformer-based self-supervised models.
Abstract:We present the SUPERB challenge at SLT 2022, which aims at learning self-supervised speech representation for better performance, generalization, and efficiency. The challenge builds upon the SUPERB benchmark and implements metrics to measure the computation requirements of self-supervised learning (SSL) representation and to evaluate its generalizability and performance across the diverse SUPERB tasks. The SUPERB benchmark provides comprehensive coverage of popular speech processing tasks, from speech and speaker recognition to audio generation and semantic understanding. As SSL has gained interest in the speech community and showed promising outcomes, we envision the challenge to uplevel the impact of SSL techniques by motivating more practical designs of techniques beyond task performance. We summarize the results of 14 submitted models in this paper. We also discuss the main findings from those submissions and the future directions of SSL research.