Abstract:This technical report presents our initial attempt to build a spoken large language model (LLM) for Taiwanese Mandarin, specifically tailored to enable real-time, speech-to-speech interaction in multi-turn conversations. Our end-to-end model incorporates a decoder-only transformer architecture and aims to achieve seamless interaction while preserving the conversational flow, including full-duplex capabilities allowing simultaneous speaking and listening. The paper also details the training process, including data preparation with synthesized dialogues and adjustments for real-time interaction. We also developed a platform to evaluate conversational fluency and response coherence in multi-turn dialogues. We hope the release of the report can contribute to the future development of spoken LLMs in Taiwanese Mandarin.
Abstract:Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Abstract:In this work, we introduce Speech-Copilot, a modular framework for instruction-oriented speech-processing tasks that minimizes human effort in toolset construction. Unlike end-to-end methods using large audio-language models, Speech-Copilot builds speech processing-specific toolsets by analyzing pre-collected task instructions and breaking tasks into manageable sub-tasks. It features a flexible agent based on large language models that performs tasks through program generation. Our approach achieves state-of-the-art performance on the Dynamic-SUPERB benchmark, demonstrating its effectiveness across diverse speech-processing tasks. Key contributions include: 1) developing an innovative framework for speech processing-specific toolset construction, 2) establishing a high-performing agent based on large language models, and 3) offering a new perspective on addressing challenging instruction-oriented speech-processing tasks. Without additional training processes required by end-to-end approaches, our method provides a flexible and extendable solution for a wide range of speech-processing applications.
Abstract:Speech Integrated Large Language Models (SILLMs) combine large language models with speech perception to perform diverse tasks, such as emotion recognition to speaker verification, demonstrating universal audio understanding capability. However, these models may amplify biases present in training data, potentially leading to biased access to information for marginalized groups. This work introduces a curated spoken bias evaluation toolkit and corresponding dataset. We evaluate gender bias in SILLMs across four semantic-related tasks: speech-to-text translation (STT), spoken coreference resolution (SCR), spoken sentence continuation (SSC), and spoken question answering (SQA). Our analysis reveals that bias levels are language-dependent and vary with different evaluation methods. Our findings emphasize the necessity of employing multiple approaches to comprehensively assess biases in SILLMs, providing insights for developing fairer SILLM systems.
Abstract:This research explores the interaction between Whisper, a high-performing speech recognition model, and information in prompts. Our results unexpectedly show that Whisper may not fully grasp textual prompts as anticipated. Additionally, we find that performance improvement is not guaranteed even with stronger adherence to the topic information in textual prompts. It is also noted that English prompts generally outperform Mandarin ones on datasets of both languages, likely due to differences in training data distributions for these languages. Conversely, we discover that Whisper exhibits awareness of misleading information in language tokens by effectively ignoring incorrect language tokens and focusing on the correct ones. In summary, this work raises questions about Whisper's prompt understanding capability and encourages further studies.
Abstract:This work evaluated several cutting-edge large-scale foundation models based on self-supervision or weak supervision, including SeamlessM4T, SeamlessM4T v2, and Whisper-large-v3, on three code-switched corpora. We found that self-supervised models can achieve performances close to the supervised model, indicating the effectiveness of multilingual self-supervised pre-training. We also observed that these models still have room for improvement as they kept making similar mistakes and had unsatisfactory performances on modeling intra-sentential code-switching. In addition, the validity of several variants of Whisper was explored, and we concluded that they remained effective in a code-switching scenario, and similar techniques for self-supervised models are worth studying to boost the performance of code-switched tasks.
Abstract:We introduce a new zero resource code-switched speech benchmark designed to directly assess the code-switching capabilities of self-supervised speech encoders. We showcase a baseline system of language modeling on discrete units to demonstrate how the code-switching abilities of speech encoders can be assessed in a zero-resource manner. Our experiments encompass a variety of well-known speech encoders, including Wav2vec 2.0, HuBERT, XLSR, etc. We examine the impact of pre-training languages and model size on benchmark performance. Notably, though our results demonstrate that speech encoders with multilingual pre-training, exemplified by XLSR, outperform monolingual variants (Wav2vec 2.0, HuBERT) in code-switching scenarios, there is still substantial room for improvement in their code-switching linguistic abilities.