Abstract:Should LLMs generate language that makes them seem human? Human-like language might improve user experience, but might also lead to overreliance and stereotyping. Assessing these potential impacts requires a systematic way to measure human-like tone in LLM outputs. We introduce HumT and SocioT, metrics for human-like tone and other dimensions of social perceptions in text data based on relative probabilities from an LLM. By measuring HumT across preference and usage datasets, we find that users prefer less human-like outputs from LLMs. HumT also offers insights into the impacts of anthropomorphism: human-like LLM outputs are highly correlated with warmth, social closeness, femininity, and low status, which are closely linked to the aforementioned harms. We introduce DumT, a method using HumT to systematically control and reduce the degree of human-like tone while preserving model performance. DumT offers a practical approach for mitigating risks associated with anthropomorphic language generation.
Abstract:Word similarity has many applications to social science and cultural analytics tasks like measuring meaning change over time and making sense of contested terms. Yet traditional similarity methods based on cosine similarity between word embeddings cannot capture the context-dependent, asymmetrical, polysemous nature of semantic similarity. We propose a new measure of similarity, Word Confusion, that reframes semantic similarity in terms of feature-based classification confusion. Word Confusion is inspired by Tversky's suggestion that similarity features be chosen dynamically. Here we train a classifier to map contextual embeddings to word identities and use the classifier confusion (the probability of choosing a confounding word c instead of the correct target word t) as a measure of the similarity of c and t. The set of potential confounding words acts as the chosen features. Our method is comparable to cosine similarity in matching human similarity judgments across several datasets (MEN, WirdSim353, and SimLex), and can measure similarity using predetermined features of interest. We demonstrate our model's ability to make use of dynamic features by applying it to test a hypothesis about changes in the 18th C. meaning of the French word "revolution" from popular to state action during the French Revolution. We hope this reimagining of semantic similarity will inspire the development of new tools that better capture the multi-faceted and dynamic nature of language, advancing the fields of computational social science and cultural analytics and beyond.
Abstract:Modern deep learning models often achieve high overall performance, but consistently fail on specific subgroups. Group distributionally robust optimization (group DRO) addresses this problem by minimizing the worst-group loss, but it fails when group losses misrepresent performance differences between groups. This is common in domains like speech, where the widely used connectionist temporal classification (CTC) loss scales with input length and varies with linguistic and acoustic properties, leading to spurious differences between group losses. We present CTC-DRO, which addresses the shortcomings of the group DRO objective by smoothing the group weight update to prevent overemphasis on consistently high-loss groups, while using input length-matched batching to mitigate CTC's scaling issues. We evaluate CTC-DRO on the task of multilingual automatic speech recognition (ASR) across five language sets from the ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO and CTC-based baseline models, reducing the worst-language error by up to 65.9% and the average error by up to 47.7%. CTC-DRO can be applied to ASR with minimal computational costs, and offers the potential for reducing group disparities in other domains with similar challenges.
Abstract:Fine-grained steering of language model outputs is essential for safety and reliability. Prompting and finetuning are widely used to achieve these goals, but interpretability researchers have proposed a variety of representation-based techniques as well, including sparse autoencoders (SAEs), linear artificial tomography, supervised steering vectors, linear probes, and representation finetuning. At present, there is no benchmark for making direct comparisons between these proposals. Therefore, we introduce AxBench, a large-scale benchmark for steering and concept detection, and report experiments on Gemma-2-2B and 9B. For steering, we find that prompting outperforms all existing methods, followed by finetuning. For concept detection, representation-based methods such as difference-in-means, perform the best. On both evaluations, SAEs are not competitive. We introduce a novel weakly-supervised representational method (Rank-1 Representation Finetuning; ReFT-r1), which is competitive on both tasks while providing the interpretability advantages that prompting lacks. Along with AxBench, we train and publicly release SAE-scale feature dictionaries for ReFT-r1 and DiffMean.
Abstract:As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.
Abstract:In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates. Prior work has established strong correlations between the number of in-context examples provided and the accuracy of the model's predictions. In this paper, we seek to explain this correlation by showing that ICL approximates a Bayesian learner. This perspective gives rise to a family of novel Bayesian scaling laws for ICL. In experiments with \mbox{GPT-2} models of different sizes, our scaling laws exceed or match existing scaling laws in accuracy while also offering interpretable terms for task priors, learning efficiency, and per-example probabilities. To illustrate the analytic power that such interpretable scaling laws provide, we report on controlled synthetic dataset experiments designed to inform real-world studies of safety alignment. In our experimental protocol, we use SFT to suppress an unwanted existing model capability and then use ICL to try to bring that capability back (many-shot jailbreaking). We then experiment on real-world instruction-tuned LLMs using capabilities benchmarks as well as a new many-shot jailbreaking dataset. In all cases, Bayesian scaling laws accurately predict the conditions under which ICL will cause the suppressed behavior to reemerge, which sheds light on the ineffectiveness of post-training at increasing LLM safety.
Abstract:Large language models (LLMs) have shown high agreement with human raters across a variety of tasks, demonstrating potential to ease the challenges of human data collection. In computational social science (CSS), researchers are increasingly leveraging LLM annotations to complement slow and expensive human annotations. Still, guidelines for collecting and using LLM annotations, without compromising the validity of downstream conclusions, remain limited. We introduce Confidence-Driven Inference: a method that combines LLM annotations and LLM confidence indicators to strategically select which human annotations should be collected, with the goal of producing accurate statistical estimates and provably valid confidence intervals while reducing the number of human annotations needed. Our approach comes with safeguards against LLM annotations of poor quality, guaranteeing that the conclusions will be both valid and no less accurate than if we only relied on human annotations. We demonstrate the effectiveness of Confidence-Driven Inference over baselines in statistical estimation tasks across three CSS settings--text politeness, stance, and bias--reducing the needed number of human annotations by over 25% in each. Although we use CSS settings for demonstration, Confidence-Driven Inference can be used to estimate most standard quantities across a broad range of NLP problems.
Abstract:This study asks how self-supervised speech models represent suprasegmental categories like Mandarin lexical tone, English lexical stress, and English phrasal accents. Through a series of probing tasks, we make layer-wise comparisons of English and Mandarin 12 layer monolingual models. Our findings suggest that 1) English and Mandarin wav2vec 2.0 models learn contextual representations of abstract suprasegmental categories which are strongest in the middle third of the network. 2) Models are better at representing features that exist in the language of their training data, and this difference is driven by enriched context in transformer blocks, not local acoustic representation. 3) Fine-tuned wav2vec 2.0 improves performance in later layers compared to pre-trained models mainly for lexically contrastive features like tone and stress, 4) HuBERT and WavLM learn similar representations to wav2vec 2.0, differing mainly in later layer performance. Our results extend previous understanding of how models represent suprasegmentals and offer new insights into the language-specificity and contextual nature of these representations.
Abstract:The safety of Large Language Models (LLMs) remains a critical concern due to a lack of adequate benchmarks for systematically evaluating their ability to resist generating harmful content. Previous efforts towards automated red teaming involve static or templated sets of illicit requests and adversarial prompts which have limited utility given jailbreak attacks' evolving and composable nature. We propose a novel dynamic benchmark of composable jailbreak attacks to move beyond static datasets and taxonomies of attacks and harms. Our approach consists of three components collectively called h4rm3l: (1) a domain-specific language that formally expresses jailbreak attacks as compositions of parameterized prompt transformation primitives, (2) bandit-based few-shot program synthesis algorithms that generate novel attacks optimized to penetrate the safety filters of a target black box LLM, and (3) open-source automated red-teaming software employing the previous two components. We use h4rm3l to generate a dataset of 2656 successful novel jailbreak attacks targeting 6 state-of-the-art (SOTA) open-source and proprietary LLMs. Several of our synthesized attacks are more effective than previously reported ones, with Attack Success Rates exceeding 90% on SOTA closed language models such as claude-3-haiku and GPT4-o. By generating datasets of jailbreak attacks in a unified formal representation, h4rm3l enables reproducible benchmarking and automated red-teaming, contributes to understanding LLM safety limitations, and supports the development of robust defenses in an increasingly LLM-integrated world. Warning: This paper and related research artifacts contain offensive and potentially disturbing prompts and model-generated content.
Abstract:Model checklists (Ribeiro et al., 2020) have emerged as a useful tool for understanding the behavior of LLMs, analogous to unit-testing in software engineering. However, despite datasets being a key determinant of model behavior, evaluating datasets, e.g., for the existence of annotation artifacts, is largely done ad hoc, once a problem in model behavior has already been found downstream. In this work, we take a more principled approach to unit-testing datasets by proposing a taxonomy based on the V-information literature. We call a collection of such unit tests a data checklist. Using a checklist, not only are we able to recover known artifacts in well-known datasets such as SNLI, but we also discover previously unknown artifacts in preference datasets for LLM alignment. Data checklists further enable a new kind of data filtering, which we use to improve the efficacy and data efficiency of preference alignment.