Abstract:As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.
Abstract:In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates. Prior work has established strong correlations between the number of in-context examples provided and the accuracy of the model's predictions. In this paper, we seek to explain this correlation by showing that ICL approximates a Bayesian learner. This perspective gives rise to a family of novel Bayesian scaling laws for ICL. In experiments with \mbox{GPT-2} models of different sizes, our scaling laws exceed or match existing scaling laws in accuracy while also offering interpretable terms for task priors, learning efficiency, and per-example probabilities. To illustrate the analytic power that such interpretable scaling laws provide, we report on controlled synthetic dataset experiments designed to inform real-world studies of safety alignment. In our experimental protocol, we use SFT to suppress an unwanted existing model capability and then use ICL to try to bring that capability back (many-shot jailbreaking). We then experiment on real-world instruction-tuned LLMs using capabilities benchmarks as well as a new many-shot jailbreaking dataset. In all cases, Bayesian scaling laws accurately predict the conditions under which ICL will cause the suppressed behavior to reemerge, which sheds light on the ineffectiveness of post-training at increasing LLM safety.
Abstract:Large language models (LLMs) have shown high agreement with human raters across a variety of tasks, demonstrating potential to ease the challenges of human data collection. In computational social science (CSS), researchers are increasingly leveraging LLM annotations to complement slow and expensive human annotations. Still, guidelines for collecting and using LLM annotations, without compromising the validity of downstream conclusions, remain limited. We introduce Confidence-Driven Inference: a method that combines LLM annotations and LLM confidence indicators to strategically select which human annotations should be collected, with the goal of producing accurate statistical estimates and provably valid confidence intervals while reducing the number of human annotations needed. Our approach comes with safeguards against LLM annotations of poor quality, guaranteeing that the conclusions will be both valid and no less accurate than if we only relied on human annotations. We demonstrate the effectiveness of Confidence-Driven Inference over baselines in statistical estimation tasks across three CSS settings--text politeness, stance, and bias--reducing the needed number of human annotations by over 25% in each. Although we use CSS settings for demonstration, Confidence-Driven Inference can be used to estimate most standard quantities across a broad range of NLP problems.
Abstract:This study asks how self-supervised speech models represent suprasegmental categories like Mandarin lexical tone, English lexical stress, and English phrasal accents. Through a series of probing tasks, we make layer-wise comparisons of English and Mandarin 12 layer monolingual models. Our findings suggest that 1) English and Mandarin wav2vec 2.0 models learn contextual representations of abstract suprasegmental categories which are strongest in the middle third of the network. 2) Models are better at representing features that exist in the language of their training data, and this difference is driven by enriched context in transformer blocks, not local acoustic representation. 3) Fine-tuned wav2vec 2.0 improves performance in later layers compared to pre-trained models mainly for lexically contrastive features like tone and stress, 4) HuBERT and WavLM learn similar representations to wav2vec 2.0, differing mainly in later layer performance. Our results extend previous understanding of how models represent suprasegmentals and offer new insights into the language-specificity and contextual nature of these representations.
Abstract:The safety of Large Language Models (LLMs) remains a critical concern due to a lack of adequate benchmarks for systematically evaluating their ability to resist generating harmful content. Previous efforts towards automated red teaming involve static or templated sets of illicit requests and adversarial prompts which have limited utility given jailbreak attacks' evolving and composable nature. We propose a novel dynamic benchmark of composable jailbreak attacks to move beyond static datasets and taxonomies of attacks and harms. Our approach consists of three components collectively called h4rm3l: (1) a domain-specific language that formally expresses jailbreak attacks as compositions of parameterized prompt transformation primitives, (2) bandit-based few-shot program synthesis algorithms that generate novel attacks optimized to penetrate the safety filters of a target black box LLM, and (3) open-source automated red-teaming software employing the previous two components. We use h4rm3l to generate a dataset of 2656 successful novel jailbreak attacks targeting 6 state-of-the-art (SOTA) open-source and proprietary LLMs. Several of our synthesized attacks are more effective than previously reported ones, with Attack Success Rates exceeding 90% on SOTA closed language models such as claude-3-haiku and GPT4-o. By generating datasets of jailbreak attacks in a unified formal representation, h4rm3l enables reproducible benchmarking and automated red-teaming, contributes to understanding LLM safety limitations, and supports the development of robust defenses in an increasingly LLM-integrated world. Warning: This paper and related research artifacts contain offensive and potentially disturbing prompts and model-generated content.
Abstract:Model checklists (Ribeiro et al., 2020) have emerged as a useful tool for understanding the behavior of LLMs, analogous to unit-testing in software engineering. However, despite datasets being a key determinant of model behavior, evaluating datasets, e.g., for the existence of annotation artifacts, is largely done ad hoc, once a problem in model behavior has already been found downstream. In this work, we take a more principled approach to unit-testing datasets by proposing a taxonomy based on the V-information literature. We call a collection of such unit tests a data checklist. Using a checklist, not only are we able to recover known artifacts in well-known datasets such as SNLI, but we also discover previously unknown artifacts in preference datasets for LLM alignment. Data checklists further enable a new kind of data filtering, which we use to improve the efficacy and data efficiency of preference alignment.
Abstract:The reconfiguration of human-LM interactions from simple sentence completions to complex, multi-domain, humanlike engagements necessitates new methodologies to understand how humans choose to rely on LMs. In our work, we contend that reliance is influenced by numerous factors within the interactional context of a generation, a departure from prior work that used verbalized confidence (e.g., "I'm certain the answer is...") as the key determinant of reliance. Here, we introduce Rel-A.I., an in situ, system-level evaluation approach to measure human reliance on LM-generated epistemic markers (e.g., "I think it's..", "Undoubtedly it's..."). Using this methodology, we measure reliance rates in three emergent human-LM interaction settings: long-term interactions, anthropomorphic generations, and variable subject matter. Our findings reveal that reliance is not solely based on verbalized confidence but is significantly affected by other features of the interaction context. Prior interactions, anthropomorphic cues, and subject domain all contribute to reliance variability. An expression such as, "I'm pretty sure it's...", can vary up to 20% in reliance frequency depending on its interactional context. Our work underscores the importance of context in understanding human reliance and offers future designers and researchers with a methodology to conduct such measurements.
Abstract:ML-SUPERB evaluates self-supervised learning (SSL) models on the tasks of language identification and automatic speech recognition (ASR). This benchmark treats the models as feature extractors and uses a single shallow downstream model, which can be fine-tuned for a downstream task. However, real-world use cases may require different configurations. This paper presents ML-SUPERB~2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models across downstream models, fine-tuning setups, and efficient model adaptation approaches. We find performance improvements over the setup of ML-SUPERB. However, performance depends on the downstream model design. Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches to improve multilingual ASR performance.
Abstract:Parameter-efficient fine-tuning (PEFT) methods seek to adapt large models via updates to a small number of weights. However, much prior interpretability work has shown that representations encode rich semantic information, suggesting that editing representations might be a more powerful alternative. Here, we pursue this hypothesis by developing a family of $\textbf{Representation Finetuning (ReFT)}$ methods. ReFT methods operate on a frozen base model and learn task-specific interventions on hidden representations. We define a strong instance of the ReFT family, Low-rank Linear Subspace ReFT (LoReFT). LoReFT is a drop-in replacement for existing PEFTs and learns interventions that are 10x-50x more parameter-efficient than prior state-of-the-art PEFTs. We showcase LoReFT on eight commonsense reasoning tasks, four arithmetic reasoning tasks, Alpaca-Eval v1.0, and GLUE. In all these evaluations, LoReFT delivers the best balance of efficiency and performance, and almost always outperforms state-of-the-art PEFTs. We release a generic ReFT training library publicly at https://github.com/stanfordnlp/pyreft.
Abstract:The use of words to convey speaker's intent is traditionally distinguished from the `mention' of words for quoting what someone said, or pointing out properties of a word. Here we show that computationally modeling this use-mention distinction is crucial for dealing with counterspeech online. Counterspeech that refutes problematic content often mentions harmful language but is not harmful itself (e.g., calling a vaccine dangerous is not the same as expressing disapproval of someone for calling vaccines dangerous). We show that even recent language models fail at distinguishing use from mention, and that this failure propagates to two key downstream tasks: misinformation and hate speech detection, resulting in censorship of counterspeech. We introduce prompting mitigations that teach the use-mention distinction, and show they reduce these errors. Our work highlights the importance of the use-mention distinction for NLP and CSS and offers ways to address it.