Abstract:As generative artificial intelligence (AI) enables the creation and dissemination of information at massive scale and speed, it is increasingly important to understand how people perceive AI-generated content. One prominent policy proposal requires explicitly labeling AI-generated content to increase transparency and encourage critical thinking about the information, but prior research has not yet tested the effects of such labels. To address this gap, we conducted a survey experiment (N=1601) on a diverse sample of Americans, presenting participants with an AI-generated message about several public policies (e.g., allowing colleges to pay student-athletes), randomly assigning whether participants were told the message was generated by (a) an expert AI model, (b) a human policy expert, or (c) no label. We found that messages were generally persuasive, influencing participants' views of the policies by 9.74 percentage points on average. However, while 94.6% of participants assigned to the AI and human label conditions believed the authorship labels, labels had no significant effects on participants' attitude change toward the policies, judgments of message accuracy, nor intentions to share the message with others. These patterns were robust across a variety of participant characteristics, including prior knowledge of the policy, prior experience with AI, political party, education level, or age. Taken together, these results imply that, while authorship labels would likely enhance transparency, they are unlikely to substantially affect the persuasiveness of the labeled content, highlighting the need for alternative strategies to address challenges posed by AI-generated information.
Abstract:Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.
Abstract:Should LLMs generate language that makes them seem human? Human-like language might improve user experience, but might also lead to overreliance and stereotyping. Assessing these potential impacts requires a systematic way to measure human-like tone in LLM outputs. We introduce HumT and SocioT, metrics for human-like tone and other dimensions of social perceptions in text data based on relative probabilities from an LLM. By measuring HumT across preference and usage datasets, we find that users prefer less human-like outputs from LLMs. HumT also offers insights into the impacts of anthropomorphism: human-like LLM outputs are highly correlated with warmth, social closeness, femininity, and low status, which are closely linked to the aforementioned harms. We introduce DumT, a method using HumT to systematically control and reduce the degree of human-like tone while preserving model performance. DumT offers a practical approach for mitigating risks associated with anthropomorphic language generation.
Abstract:Word similarity has many applications to social science and cultural analytics tasks like measuring meaning change over time and making sense of contested terms. Yet traditional similarity methods based on cosine similarity between word embeddings cannot capture the context-dependent, asymmetrical, polysemous nature of semantic similarity. We propose a new measure of similarity, Word Confusion, that reframes semantic similarity in terms of feature-based classification confusion. Word Confusion is inspired by Tversky's suggestion that similarity features be chosen dynamically. Here we train a classifier to map contextual embeddings to word identities and use the classifier confusion (the probability of choosing a confounding word c instead of the correct target word t) as a measure of the similarity of c and t. The set of potential confounding words acts as the chosen features. Our method is comparable to cosine similarity in matching human similarity judgments across several datasets (MEN, WirdSim353, and SimLex), and can measure similarity using predetermined features of interest. We demonstrate our model's ability to make use of dynamic features by applying it to test a hypothesis about changes in the 18th C. meaning of the French word "revolution" from popular to state action during the French Revolution. We hope this reimagining of semantic similarity will inspire the development of new tools that better capture the multi-faceted and dynamic nature of language, advancing the fields of computational social science and cultural analytics and beyond.
Abstract:Modern deep learning models often achieve high overall performance, but consistently fail on specific subgroups. Group distributionally robust optimization (group DRO) addresses this problem by minimizing the worst-group loss, but it fails when group losses misrepresent performance differences between groups. This is common in domains like speech, where the widely used connectionist temporal classification (CTC) loss scales with input length and varies with linguistic and acoustic properties, leading to spurious differences between group losses. We present CTC-DRO, which addresses the shortcomings of the group DRO objective by smoothing the group weight update to prevent overemphasis on consistently high-loss groups, while using input length-matched batching to mitigate CTC's scaling issues. We evaluate CTC-DRO on the task of multilingual automatic speech recognition (ASR) across five language sets from the ML-SUPERB 2.0 benchmark. CTC-DRO consistently outperforms group DRO and CTC-based baseline models, reducing the worst-language error by up to 65.9% and the average error by up to 47.7%. CTC-DRO can be applied to ASR with minimal computational costs, and offers the potential for reducing group disparities in other domains with similar challenges.
Abstract:Fine-grained steering of language model outputs is essential for safety and reliability. Prompting and finetuning are widely used to achieve these goals, but interpretability researchers have proposed a variety of representation-based techniques as well, including sparse autoencoders (SAEs), linear artificial tomography, supervised steering vectors, linear probes, and representation finetuning. At present, there is no benchmark for making direct comparisons between these proposals. Therefore, we introduce AxBench, a large-scale benchmark for steering and concept detection, and report experiments on Gemma-2-2B and 9B. For steering, we find that prompting outperforms all existing methods, followed by finetuning. For concept detection, representation-based methods such as difference-in-means, perform the best. On both evaluations, SAEs are not competitive. We introduce a novel weakly-supervised representational method (Rank-1 Representation Finetuning; ReFT-r1), which is competitive on both tasks while providing the interpretability advantages that prompting lacks. Along with AxBench, we train and publicly release SAE-scale feature dictionaries for ReFT-r1 and DiffMean.
Abstract:As language models (LMs) become integral to fields like healthcare, law, and journalism, their ability to differentiate between fact, belief, and knowledge is essential for reliable decision-making. Failure to grasp these distinctions can lead to significant consequences in areas such as medical diagnosis, legal judgments, and dissemination of fake news. Despite this, current literature has largely focused on more complex issues such as theory of mind, overlooking more fundamental epistemic challenges. This study systematically evaluates the epistemic reasoning capabilities of modern LMs, including GPT-4, Claude-3, and Llama-3, using a new dataset, KaBLE, consisting of 13,000 questions across 13 tasks. Our results reveal key limitations. First, while LMs achieve 86% accuracy on factual scenarios, their performance drops significantly with false scenarios, particularly in belief-related tasks. Second, LMs struggle with recognizing and affirming personal beliefs, especially when those beliefs contradict factual data, which raises concerns for applications in healthcare and counseling, where engaging with a person's beliefs is critical. Third, we identify a salient bias in how LMs process first-person versus third-person beliefs, performing better on third-person tasks (80.7%) compared to first-person tasks (54.4%). Fourth, LMs lack a robust understanding of the factive nature of knowledge, namely, that knowledge inherently requires truth. Fifth, LMs rely on linguistic cues for fact-checking and sometimes bypass the deeper reasoning. These findings highlight significant concerns about current LMs' ability to reason about truth, belief, and knowledge while emphasizing the need for advancements in these areas before broad deployment in critical sectors.
Abstract:In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates. Prior work has established strong correlations between the number of in-context examples provided and the accuracy of the model's predictions. In this paper, we seek to explain this correlation by showing that ICL approximates a Bayesian learner. This perspective gives rise to a family of novel Bayesian scaling laws for ICL. In experiments with \mbox{GPT-2} models of different sizes, our scaling laws exceed or match existing scaling laws in accuracy while also offering interpretable terms for task priors, learning efficiency, and per-example probabilities. To illustrate the analytic power that such interpretable scaling laws provide, we report on controlled synthetic dataset experiments designed to inform real-world studies of safety alignment. In our experimental protocol, we use SFT to suppress an unwanted existing model capability and then use ICL to try to bring that capability back (many-shot jailbreaking). We then experiment on real-world instruction-tuned LLMs using capabilities benchmarks as well as a new many-shot jailbreaking dataset. In all cases, Bayesian scaling laws accurately predict the conditions under which ICL will cause the suppressed behavior to reemerge, which sheds light on the ineffectiveness of post-training at increasing LLM safety.
Abstract:Large language models (LLMs) have shown high agreement with human raters across a variety of tasks, demonstrating potential to ease the challenges of human data collection. In computational social science (CSS), researchers are increasingly leveraging LLM annotations to complement slow and expensive human annotations. Still, guidelines for collecting and using LLM annotations, without compromising the validity of downstream conclusions, remain limited. We introduce Confidence-Driven Inference: a method that combines LLM annotations and LLM confidence indicators to strategically select which human annotations should be collected, with the goal of producing accurate statistical estimates and provably valid confidence intervals while reducing the number of human annotations needed. Our approach comes with safeguards against LLM annotations of poor quality, guaranteeing that the conclusions will be both valid and no less accurate than if we only relied on human annotations. We demonstrate the effectiveness of Confidence-Driven Inference over baselines in statistical estimation tasks across three CSS settings--text politeness, stance, and bias--reducing the needed number of human annotations by over 25% in each. Although we use CSS settings for demonstration, Confidence-Driven Inference can be used to estimate most standard quantities across a broad range of NLP problems.
Abstract:This study asks how self-supervised speech models represent suprasegmental categories like Mandarin lexical tone, English lexical stress, and English phrasal accents. Through a series of probing tasks, we make layer-wise comparisons of English and Mandarin 12 layer monolingual models. Our findings suggest that 1) English and Mandarin wav2vec 2.0 models learn contextual representations of abstract suprasegmental categories which are strongest in the middle third of the network. 2) Models are better at representing features that exist in the language of their training data, and this difference is driven by enriched context in transformer blocks, not local acoustic representation. 3) Fine-tuned wav2vec 2.0 improves performance in later layers compared to pre-trained models mainly for lexically contrastive features like tone and stress, 4) HuBERT and WavLM learn similar representations to wav2vec 2.0, differing mainly in later layer performance. Our results extend previous understanding of how models represent suprasegmentals and offer new insights into the language-specificity and contextual nature of these representations.