Stanford University
Abstract:While compositional accounts of human language understanding are based on a hierarchical tree-like process, neural models like transformers lack a direct inductive bias for such tree structures. Introducing syntactic inductive biases could unlock more robust and data-efficient learning in transformer language models (LMs), but existing methods for incorporating such structure greatly restrict models, either limiting their expressivity or increasing inference complexity. This work instead aims to softly inject syntactic inductive biases into given transformer circuits, through a structured regularizer. We introduce TREEREG, an auxiliary loss function that converts bracketing decisions from silver parses into a set of differentiable orthogonality constraints on vector hidden states. TREEREG integrates seamlessly with the standard LM objective, requiring no architectural changes. LMs pre-trained with TreeReg on natural language corpora such as WikiText-103 achieve up to 10% lower perplexities on out-of-distribution data and up to 9.5 point improvements in syntactic generalization, requiring less than half the training data to outperform standard LMs. TreeReg still provides gains for pre-trained LLMs: Continued pre-training of Sheared Llama with TreeReg results in improved syntactic generalization, and fine-tuning on MultiNLI with TreeReg mitigates degradation of performance on adversarial NLI benchmarks by 41.2 points.
Abstract:The safety of Large Language Models (LLMs) remains a critical concern due to a lack of adequate benchmarks for systematically evaluating their ability to resist generating harmful content. Previous efforts towards automated red teaming involve static or templated sets of illicit requests and adversarial prompts which have limited utility given jailbreak attacks' evolving and composable nature. We propose a novel dynamic benchmark of composable jailbreak attacks to move beyond static datasets and taxonomies of attacks and harms. Our approach consists of three components collectively called h4rm3l: (1) a domain-specific language that formally expresses jailbreak attacks as compositions of parameterized prompt transformation primitives, (2) bandit-based few-shot program synthesis algorithms that generate novel attacks optimized to penetrate the safety filters of a target black box LLM, and (3) open-source automated red-teaming software employing the previous two components. We use h4rm3l to generate a dataset of 2656 successful novel jailbreak attacks targeting 6 state-of-the-art (SOTA) open-source and proprietary LLMs. Several of our synthesized attacks are more effective than previously reported ones, with Attack Success Rates exceeding 90% on SOTA closed language models such as claude-3-haiku and GPT4-o. By generating datasets of jailbreak attacks in a unified formal representation, h4rm3l enables reproducible benchmarking and automated red-teaming, contributes to understanding LLM safety limitations, and supports the development of robust defenses in an increasingly LLM-integrated world. Warning: This paper and related research artifacts contain offensive and potentially disturbing prompts and model-generated content.
Abstract:High-quality and high-coverage rule sets are imperative to the success of Neuro-Symbolic Knowledge Graph Completion (NS-KGC) models, because they form the basis of all symbolic inferences. Recent literature builds neural models for generating rule sets, however, preliminary experiments show that they struggle with maintaining high coverage. In this work, we suggest three simple augmentations to existing rule sets: (1) transforming rules to their abductive forms, (2) generating equivalent rules that use inverse forms of constituent relations and (3) random walks that propose new rules. Finally, we prune potentially low quality rules. Experiments over four datasets and five ruleset-baseline settings suggest that these simple augmentations consistently improve results, and obtain up to 7.1 pt MRR and 8.5 pt Hits@1 gains over using rules without augmentations.
Abstract:Recent works leverage LLMs to roleplay realistic social scenarios, aiding novices in practicing their social skills. However, simulating sensitive interactions, such as in mental health, is challenging. Privacy concerns restrict data access, and collecting expert feedback, although vital, is laborious. To address this, we develop Roleplay-doh, a novel human-LLM collaboration pipeline that elicits qualitative feedback from a domain-expert, which is transformed into a set of principles, or natural language rules, that govern an LLM-prompted roleplay. We apply this pipeline to enable senior mental health supporters to create customized AI patients for simulated practice partners for novice counselors. After uncovering issues in GPT-4 simulations not adhering to expert-defined principles, we also introduce a novel principle-adherence prompting pipeline which shows 30\% improvements in response quality and principle following for the downstream task. Via a user study with 25 counseling experts, we demonstrate that the pipeline makes it easy and effective to create AI patients that more faithfully resemble real patients, as judged by creators and third-party counselors.
Abstract:We consider two popular approaches to Knowledge Graph Completion (KGC): textual models that rely on textual entity descriptions, and structure-based models that exploit the connectivity structure of the Knowledge Graph (KG). Preliminary experiments show that these approaches have complementary strengths: structure-based models perform well when the gold answer is easily reachable from the query head in the KG, while textual models exploit descriptions to give good performance even when the gold answer is not reachable. In response, we explore ensembling as a way of combining the best of both approaches. We propose a novel method for learning query-dependent ensemble weights by using the distributions of scores assigned by individual models to all candidate entities. Our ensemble baseline achieves state-of-the-art results on three standard KGC datasets, with up to 6.8 pt MRR and 8.3 pt Hits@1 gains over best individual models.