Abstract:ML-SUPERB evaluates self-supervised learning (SSL) models on the tasks of language identification and automatic speech recognition (ASR). This benchmark treats the models as feature extractors and uses a single shallow downstream model, which can be fine-tuned for a downstream task. However, real-world use cases may require different configurations. This paper presents ML-SUPERB~2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models across downstream models, fine-tuning setups, and efficient model adaptation approaches. We find performance improvements over the setup of ML-SUPERB. However, performance depends on the downstream model design. Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches to improve multilingual ASR performance.
Abstract:The performance of automatic speech recognition (ASR) systems has advanced substantially in recent years, particularly for languages for which a large amount of transcribed speech is available. Unfortunately, for low-resource languages, such as minority languages, regional languages or dialects, ASR performance generally remains much lower. In this study, we investigate whether data augmentation techniques could help improve low-resource ASR performance, focusing on four typologically diverse minority languages or language variants (West Germanic: Gronings, West-Frisian; Malayo-Polynesian: Besemah, Nasal). For all four languages, we examine the use of self-training, where an ASR system trained with the available human-transcribed data is used to generate transcriptions, which are then combined with the original data to train a new ASR system. For Gronings, for which there was a pre-existing text-to-speech (TTS) system available, we also examined the use of TTS to generate ASR training data from text-only sources. We find that using a self-training approach consistently yields improved performance (a relative WER reduction up to 20.5% compared to using an ASR system trained on 24 minutes of manually transcribed speech). The performance gain from TTS augmentation for Gronings was even stronger (up to 25.5% relative reduction in WER compared to a system based on 24 minutes of manually transcribed speech). In sum, our results show the benefit of using self-training or (if possible) TTS-generated data as an efficient solution to overcome the limitations of data availability for resource-scarce languages in order to improve ASR performance.
Abstract:Recent research using pre-trained transformer models suggests that just 10 minutes of transcribed speech may be enough to fine-tune such a model for automatic speech recognition (ASR) -- at least if we can also leverage vast amounts of text data (803 million tokens). But is that much text data necessary? We study the use of different amounts of text data, both for creating a lexicon that constrains ASR decoding to possible words (e.g. *dogz vs. dogs), and for training larger language models that bias the system toward probable word sequences (e.g. too dogs vs. two dogs). We perform experiments using 10 minutes of transcribed speech from English (for replicating prior work) and two additional pairs of languages differing in the availability of supplemental text data: Gronings and Frisian (~7.5M token corpora available), and Besemah and Nasal (only small lexica available). For all languages, we found that using only a lexicon did not appreciably improve ASR performance. For Gronings and Frisian, we found that lexica and language models derived from 'novel-length' 80k token subcorpora reduced the word error rate (WER) to 39% on average. Our findings suggest that where a text corpus in the upper tens of thousands of tokens or more is available, fine-tuning a transformer model with just tens of minutes of transcribed speech holds some promise towards obtaining human-correctable transcriptions near the 30% WER rule-of-thumb.
Abstract:Deep acoustic models represent linguistic information based on massive amounts of data. Unfortunately, for regional languages and dialects such resources are mostly not available. However, deep acoustic models might have learned linguistic information that transfers to low-resource languages. In this study, we evaluate whether this is the case through the task of distinguishing low-resource (Dutch) regional varieties. By extracting embeddings from the hidden layers of various wav2vec 2.0 models (including new models which are pre-trained and/or fine-tuned on Dutch) and using dynamic time warping, we compute pairwise pronunciation differences averaged over 10 words for over 100 individual dialects from four (regional) languages. We then cluster the resulting difference matrix in four groups and compare these to a gold standard, and a partitioning on the basis of comparing phonetic transcriptions. Our results show that acoustic models outperform the (traditional) transcription-based approach without requiring phonetic transcriptions, with the best performance achieved by the multilingual XLSR-53 model fine-tuned on Dutch. On the basis of only six seconds of speech, the resulting clustering closely matches the gold standard.
Abstract:Many archival recordings of speech from endangered languages remain unannotated and inaccessible to community members and language learning programs. One bottleneck is the time-intensive nature of annotation. An even narrower bottleneck occurs for recordings with access constraints, such as language that must be vetted or filtered by authorised community members before annotation can begin. We propose a privacy-preserving workflow to widen both bottlenecks for recordings where speech in the endangered language is intermixed with a more widely-used language such as English for meta-linguistic commentary and questions (e.g. What is the word for 'tree'?). We integrate voice activity detection (VAD), spoken language identification (SLI), and automatic speech recognition (ASR) to transcribe the metalinguistic content, which an authorised person can quickly scan to triage recordings that can be annotated by people with lower levels of access. We report work-in-progress processing 136 hours archival audio containing a mix of English and Muruwari. Our collaborative work with the Muruwari custodian of the archival materials show that this workflow reduces metalanguage transcription time by 20% even given only minimal amounts of annotated training data: 10 utterances per language for SLI and for ASR at most 39 minutes, and possibly as little as 39 seconds.
Abstract:For many (minority) languages, the resources needed to train large models are not available. We investigate the performance of zero-shot transfer learning with as little data as possible, and the influence of language similarity in this process. We retrain the lexical layers of four BERT-based models using data from two low-resource target language varieties, while the Transformer layers are independently fine-tuned on a POS-tagging task in the model's source language. By combining the new lexical layers and fine-tuned Transformer layers, we achieve high task performance for both target languages. With high language similarity, 10MB of data appears sufficient to achieve substantial monolingual transfer performance. Monolingual BERT-based models generally achieve higher downstream task performance after retraining the lexical layer than multilingual BERT, even when the target language is included in the multilingual model.
Abstract:For languages with insufficient resources to train speech recognition systems, query-by-example spoken term detection (QbE-STD) offers a way of accessing an untranscribed speech corpus by helping identify regions where spoken query terms occur. Yet retrieval performance can be poor when the query and corpus are spoken by different speakers and produced in different recording conditions. Using data selected from a variety of speakers and recording conditions from 7 Australian Aboriginal languages and a regional variety of Dutch, all of which are endangered or vulnerable, we evaluated whether QbE-STD performance on these languages could be improved by leveraging representations extracted from the pre-trained English wav2vec 2.0 model. Compared to the use of Mel-frequency cepstral coefficients and bottleneck features, we find that representations from the middle layers of the wav2vec 2.0 Transformer offer large gains in task performance (between 56% and 86%). While features extracted using the pre-trained English model yielded improved detection on all the evaluation languages, better detection performance was associated with the evaluation language's phonological similarity to English.
Abstract:Variation in speech is often represented and investigated using phonetic transcriptions, but transcribing speech is time-consuming and error prone. To create reliable representations of speech independent from phonetic transcriptions, we investigate the extraction of acoustic embeddings from several self-supervised neural models. We use these representations to compute word-based pronunciation differences between non-native and native speakers of English, and evaluate these differences by comparing them with human native-likeness judgments. We show that Transformer-based speech representations lead to significant performance gains over the use of phonetic transcriptions, and find that feature-based use of Transformer models is most effective with one or more middle layers instead of the final layer. We also demonstrate that these neural speech representations not only capture segmental differences, but also intonational and durational differences that cannot be represented by a set of discrete symbols used in phonetic transcriptions.