Abstract:ML-SUPERB evaluates self-supervised learning (SSL) models on the tasks of language identification and automatic speech recognition (ASR). This benchmark treats the models as feature extractors and uses a single shallow downstream model, which can be fine-tuned for a downstream task. However, real-world use cases may require different configurations. This paper presents ML-SUPERB~2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models across downstream models, fine-tuning setups, and efficient model adaptation approaches. We find performance improvements over the setup of ML-SUPERB. However, performance depends on the downstream model design. Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches to improve multilingual ASR performance.
Abstract:Aiming to improve the Automatic Speech Recognition (ASR) outputs with a post-processing step, ASR error correction (EC) techniques have been widely developed due to their efficiency in using parallel text data. Previous works mainly focus on using text or/ and speech data, which hinders the performance gain when not only text and speech information, but other modalities, such as visual information are critical for EC. The challenges are mainly two folds: one is that previous work fails to emphasize visual information, thus rare exploration has been studied. The other is that the community lacks a high-quality benchmark where visual information matters for the EC models. Therefore, this paper provides 1) simple yet effective methods, namely gated fusion and image captions as prompts to incorporate visual information to help EC; 2) large-scale benchmark datasets, namely Visual-ASR-EC, where each item in the training data consists of visual, speech, and text information, and the test data are carefully selected by human annotators to ensure that even humans could make mistakes when visual information is missing. Experimental results show that using captions as prompts could effectively use the visual information and surpass state-of-the-art methods by upto 1.2% in Word Error Rate(WER), which also indicates that visual information is critical in our proposed Visual-ASR-EC dataset
Abstract:Grammar Error Correction(GEC) mainly relies on the availability of high quality of large amount of synthetic parallel data of grammatically correct and erroneous sentence pairs. The quality of the synthetic data is evaluated on how well the GEC system performs when pre-trained using it. But this does not provide much insight into what are the necessary factors which define the quality of these data. So this work aims to introduce 3 metrics - reliability, diversity and distribution match to provide more insight into the quality of large-scale synthetic data generated for the GEC task, as well as automatically evaluate them. Evaluating these three metrics automatically can also help in providing feedback to the data generation systems and thereby improve the quality of the synthetic data generated dynamically