Medical Artificial Intelligence and Automation
Abstract:Current neural networks often employ multi-domain-learning or attribute-injecting mechanisms to incorporate non-independent and identically distributed (non-IID) information for text understanding tasks by capturing individual characteristics and the relationships among samples. However, the extent of the impact of non-IID information and how these methods affect pre-trained language models (PLMs) remains unclear. This study revisits the assumption that non-IID information enhances PLMs to achieve performance improvements from a Bayesian perspective, which unearths and integrates non-IID and IID features. Furthermore, we proposed a multi-attribute multi-grained framework for PLM adaptations (M2A), which combines multi-attribute and multi-grained views to mitigate uncertainty in a lightweight manner. We evaluate M2A through prevalent text-understanding datasets and demonstrate its superior performance, mainly when data are implicitly non-IID, and PLMs scale larger.
Abstract:The goal of Audio-Visual Segmentation (AVS) is to localize and segment the sounding source objects from the video frames. Researchers working on AVS suffer from limited datasets because hand-crafted annotation is expensive. Recent works attempt to overcome the challenge of limited data by leveraging the segmentation foundation model, SAM, prompting it with audio to enhance its ability to segment sounding source objects. While this approach alleviates the model's burden on understanding visual modality by utilizing pre-trained knowledge of SAM, it does not address the fundamental challenge of the limited dataset for learning audio-visual relationships. To address these limitations, we propose \textbf{AV2T-SAM}, a novel framework that bridges audio features with the text embedding space of pre-trained text-prompted SAM. Our method leverages multimodal correspondence learned from rich text-image paired datasets to enhance audio-visual alignment. Furthermore, we introduce a novel feature, $\mathbf{\textit{\textbf{f}}_{CLIP} \odot \textit{\textbf{f}}_{CLAP}}$, which emphasizes shared semantics of audio and visual modalities while filtering irrelevant noise. Experiments on the AVSBench dataset demonstrate state-of-the-art performance on both datasets of AVSBench. Our approach outperforms existing methods by effectively utilizing pretrained segmentation models and cross-modal semantic alignment.
Abstract:ASVspoof 5 is the fifth edition in a series of challenges which promote the study of speech spoofing and deepfake attacks as well as the design of detection solutions. We introduce the ASVspoof 5 database which is generated in crowdsourced fashion from data collected in diverse acoustic conditions (cf. studio-quality data for earlier ASVspoof databases) and from ~2,000 speakers (cf. ~100 earlier). The database contains attacks generated with 32 different algorithms, also crowdsourced, and optimised to varying degrees using new surrogate detection models. Among them are attacks generated with a mix of legacy and contemporary text-to-speech synthesis and voice conversion models, in addition to adversarial attacks which are incorporated for the first time. ASVspoof 5 protocols comprise seven speaker-disjoint partitions. They include two distinct partitions for the training of different sets of attack models, two more for the development and evaluation of surrogate detection models, and then three additional partitions which comprise the ASVspoof 5 training, development and evaluation sets. An auxiliary set of data collected from an additional 30k speakers can also be used to train speaker encoders for the implementation of attack algorithms. Also described herein is an experimental validation of the new ASVspoof 5 database using a set of automatic speaker verification and spoof/deepfake baseline detectors. With the exception of protocols and tools for the generation of spoofed/deepfake speech, the resources described in this paper, already used by participants of the ASVspoof 5 challenge in 2024, are now all freely available to the community.
Abstract:In this work, we introduce VERSA, a unified and standardized evaluation toolkit designed for various speech, audio, and music signals. The toolkit features a Pythonic interface with flexible configuration and dependency control, making it user-friendly and efficient. With full installation, VERSA offers 63 metrics with 711 metric variations based on different configurations. These metrics encompass evaluations utilizing diverse external resources, including matching and non-matching reference audio, text transcriptions, and text captions. As a lightweight yet comprehensive toolkit, VERSA is versatile to support the evaluation of a wide range of downstream scenarios. To demonstrate its capabilities, this work highlights example use cases for VERSA, including audio coding, speech synthesis, speech enhancement, singing synthesis, and music generation. The toolkit is available at https://github.com/shinjiwlab/versa.
Abstract:This study introduces SAMatch, a SAM-guided Match-based framework for semi-supervised medical image segmentation, aimed at improving pseudo label quality in data-scarce scenarios. While Match-based frameworks are effective, they struggle with low-quality pseudo labels due to the absence of ground truth. SAM, pre-trained on a large dataset, generalizes well across diverse tasks and assists in generating high-confidence prompts, which are then used to refine pseudo labels via fine-tuned SAM. SAMatch is trained end-to-end, allowing for dynamic interaction between the models. Experiments on the ACDC cardiac MRI, BUSI breast ultrasound, and MRLiver datasets show SAMatch achieving state-of-the-art results, with Dice scores of 89.36%, 77.76%, and 80.04%, respectively, using minimal labeled data. SAMatch effectively addresses challenges in semi-supervised segmentation, offering a powerful tool for segmentation in data-limited environments. Code and data are available at https://github.com/apple1986/SAMatch.
Abstract:Current emotional text-to-speech (TTS) systems face challenges in mimicking a broad spectrum of human emotions due to the inherent complexity of emotions and limitations in emotional speech datasets and models. This paper proposes a TTS framework that facilitates control over pleasure, arousal, and dominance, and can synthesize a diversity of emotional styles without requiring any emotional speech data during TTS training. We train an emotional attribute predictor using only categorical labels from speech data, aligning with psychological research and incorporating anchored dimensionality reduction on self-supervised learning (SSL) features. The TTS framework converts text inputs into phonetic tokens via an autoregressive language model and uses pseudo-emotional dimensions to guide the parallel prediction of fine-grained acoustic details. Experiments conducted on the LibriTTS dataset demonstrate that our framework can synthesize speech with enhanced naturalness and a variety of emotional styles by effectively controlling emotional dimensions, even without the inclusion of any emotional speech during TTS training.
Abstract:With the advancements in singing voice generation and the growing presence of AI singers on media platforms, the inaugural Singing Voice Deepfake Detection (SVDD) Challenge aims to advance research in identifying AI-generated singing voices from authentic singers. This challenge features two tracks: a controlled setting track (CtrSVDD) and an in-the-wild scenario track (WildSVDD). The CtrSVDD track utilizes publicly available singing vocal data to generate deepfakes using state-of-the-art singing voice synthesis and conversion systems. Meanwhile, the WildSVDD track expands upon the existing SingFake dataset, which includes data sourced from popular user-generated content websites. For the CtrSVDD track, we received submissions from 47 teams, with 37 surpassing our baselines and the top team achieving a 1.65% equal error rate. For the WildSVDD track, we benchmarked the baselines. This paper reviews these results, discusses key findings, and outlines future directions for SVDD research.
Abstract:This paper addresses the challenge of developing a robust audio-visual deepfake detection model. In practical use cases, new generation algorithms are continually emerging, and these algorithms are not encountered during the development of detection methods. This calls for the generalization ability of the method. Additionally, to ensure the credibility of detection methods, it is beneficial for the model to interpret which cues from the video indicate it is fake. Motivated by these considerations, we then propose a multi-stream fusion approach with one-class learning as a representation-level regularization technique. We study the generalization problem of audio-visual deepfake detection by creating a new benchmark by extending and re-splitting the existing FakeAVCeleb dataset. The benchmark contains four categories of fake video(Real Audio-Fake Visual, Fake Audio-Fake Visual, Fake Audio-Real Visual, and unsynchronized video). The experimental results show that our approach improves the model's detection of unseen attacks by an average of 7.31% across four test sets, compared to the baseline model. Additionally, our proposed framework offers interpretability, indicating which modality the model identifies as fake.
Abstract:Recent singing voice synthesis and conversion advancements necessitate robust singing voice deepfake detection (SVDD) models. Current SVDD datasets face challenges due to limited controllability, diversity in deepfake methods, and licensing restrictions. Addressing these gaps, we introduce CtrSVDD, a large-scale, diverse collection of bonafide and deepfake singing vocals. These vocals are synthesized using state-of-the-art methods from publicly accessible singing voice datasets. CtrSVDD includes 47.64 hours of bonafide and 260.34 hours of deepfake singing vocals, spanning 14 deepfake methods and involving 164 singer identities. We also present a baseline system with flexible front-end features, evaluated against a structured train/dev/eval split. The experiments show the importance of feature selection and highlight a need for generalization towards deepfake methods that deviate further from training distribution. The CtrSVDD dataset and baselines are publicly accessible.
Abstract:The rapid advancement of AI-generated singing voices, which now closely mimic natural human singing and align seamlessly with musical scores, has led to heightened concerns for artists and the music industry. Unlike spoken voice, singing voice presents unique challenges due to its musical nature and the presence of strong background music, making singing voice deepfake detection (SVDD) a specialized field requiring focused attention. To promote SVDD research, we recently proposed the "SVDD Challenge," the very first research challenge focusing on SVDD for lab-controlled and in-the-wild bonafide and deepfake singing voice recordings. The challenge will be held in conjunction with the 2024 IEEE Spoken Language Technology Workshop (SLT 2024).