Medical Artificial Intelligence and Automation
Abstract:This study introduces SAMatch, a SAM-guided Match-based framework for semi-supervised medical image segmentation, aimed at improving pseudo label quality in data-scarce scenarios. While Match-based frameworks are effective, they struggle with low-quality pseudo labels due to the absence of ground truth. SAM, pre-trained on a large dataset, generalizes well across diverse tasks and assists in generating high-confidence prompts, which are then used to refine pseudo labels via fine-tuned SAM. SAMatch is trained end-to-end, allowing for dynamic interaction between the models. Experiments on the ACDC cardiac MRI, BUSI breast ultrasound, and MRLiver datasets show SAMatch achieving state-of-the-art results, with Dice scores of 89.36%, 77.76%, and 80.04%, respectively, using minimal labeled data. SAMatch effectively addresses challenges in semi-supervised segmentation, offering a powerful tool for segmentation in data-limited environments. Code and data are available at https://github.com/apple1986/SAMatch.
Abstract:Current emotional text-to-speech (TTS) systems face challenges in mimicking a broad spectrum of human emotions due to the inherent complexity of emotions and limitations in emotional speech datasets and models. This paper proposes a TTS framework that facilitates control over pleasure, arousal, and dominance, and can synthesize a diversity of emotional styles without requiring any emotional speech data during TTS training. We train an emotional attribute predictor using only categorical labels from speech data, aligning with psychological research and incorporating anchored dimensionality reduction on self-supervised learning (SSL) features. The TTS framework converts text inputs into phonetic tokens via an autoregressive language model and uses pseudo-emotional dimensions to guide the parallel prediction of fine-grained acoustic details. Experiments conducted on the LibriTTS dataset demonstrate that our framework can synthesize speech with enhanced naturalness and a variety of emotional styles by effectively controlling emotional dimensions, even without the inclusion of any emotional speech during TTS training.
Abstract:With the advancements in singing voice generation and the growing presence of AI singers on media platforms, the inaugural Singing Voice Deepfake Detection (SVDD) Challenge aims to advance research in identifying AI-generated singing voices from authentic singers. This challenge features two tracks: a controlled setting track (CtrSVDD) and an in-the-wild scenario track (WildSVDD). The CtrSVDD track utilizes publicly available singing vocal data to generate deepfakes using state-of-the-art singing voice synthesis and conversion systems. Meanwhile, the WildSVDD track expands upon the existing SingFake dataset, which includes data sourced from popular user-generated content websites. For the CtrSVDD track, we received submissions from 47 teams, with 37 surpassing our baselines and the top team achieving a 1.65% equal error rate. For the WildSVDD track, we benchmarked the baselines. This paper reviews these results, discusses key findings, and outlines future directions for SVDD research.
Abstract:This paper addresses the challenge of developing a robust audio-visual deepfake detection model. In practical use cases, new generation algorithms are continually emerging, and these algorithms are not encountered during the development of detection methods. This calls for the generalization ability of the method. Additionally, to ensure the credibility of detection methods, it is beneficial for the model to interpret which cues from the video indicate it is fake. Motivated by these considerations, we then propose a multi-stream fusion approach with one-class learning as a representation-level regularization technique. We study the generalization problem of audio-visual deepfake detection by creating a new benchmark by extending and re-splitting the existing FakeAVCeleb dataset. The benchmark contains four categories of fake video(Real Audio-Fake Visual, Fake Audio-Fake Visual, Fake Audio-Real Visual, and unsynchronized video). The experimental results show that our approach improves the model's detection of unseen attacks by an average of 7.31% across four test sets, compared to the baseline model. Additionally, our proposed framework offers interpretability, indicating which modality the model identifies as fake.
Abstract:Recent singing voice synthesis and conversion advancements necessitate robust singing voice deepfake detection (SVDD) models. Current SVDD datasets face challenges due to limited controllability, diversity in deepfake methods, and licensing restrictions. Addressing these gaps, we introduce CtrSVDD, a large-scale, diverse collection of bonafide and deepfake singing vocals. These vocals are synthesized using state-of-the-art methods from publicly accessible singing voice datasets. CtrSVDD includes 47.64 hours of bonafide and 260.34 hours of deepfake singing vocals, spanning 14 deepfake methods and involving 164 singer identities. We also present a baseline system with flexible front-end features, evaluated against a structured train/dev/eval split. The experiments show the importance of feature selection and highlight a need for generalization towards deepfake methods that deviate further from training distribution. The CtrSVDD dataset and baselines are publicly accessible.
Abstract:The rapid advancement of AI-generated singing voices, which now closely mimic natural human singing and align seamlessly with musical scores, has led to heightened concerns for artists and the music industry. Unlike spoken voice, singing voice presents unique challenges due to its musical nature and the presence of strong background music, making singing voice deepfake detection (SVDD) a specialized field requiring focused attention. To promote SVDD research, we recently proposed the "SVDD Challenge," the very first research challenge focusing on SVDD for lab-controlled and in-the-wild bonafide and deepfake singing voice recordings. The challenge will be held in conjunction with the 2024 IEEE Spoken Language Technology Workshop (SLT 2024).
Abstract:Cone-beam computed tomography (CBCT) is widely used in image-guided radiotherapy. Reconstructing CBCTs from limited-angle acquisitions (LA-CBCT) is highly desired for improved imaging efficiency, dose reduction, and better mechanical clearance. LA-CBCT reconstruction, however, suffers from severe under-sampling artifacts, making it a highly ill-posed inverse problem. Diffusion models can generate data/images by reversing a data-noising process through learned data distributions; and can be incorporated as a denoiser/regularizer in LA-CBCT reconstruction. In this study, we developed a diffusion model-based framework, prior frequency-guided diffusion model (PFGDM), for robust and structure-preserving LA-CBCT reconstruction. PFGDM uses a conditioned diffusion model as a regularizer for LA-CBCT reconstruction, and the condition is based on high-frequency information extracted from patient-specific prior CT scans which provides a strong anatomical prior for LA-CBCT reconstruction. Specifically, we developed two variants of PFGDM (PFGDM-A and PFGDM-B) with different conditioning schemes. PFGDM-A applies the high-frequency CT information condition until a pre-optimized iteration step, and drops it afterwards to enable both similar and differing CT/CBCT anatomies to be reconstructed. PFGDM-B, on the other hand, continuously applies the prior CT information condition in every reconstruction step, while with a decaying mechanism, to gradually phase out the reconstruction guidance from the prior CT scans. The two variants of PFGDM were tested and compared with current available LA-CBCT reconstruction solutions, via metrics including PSNR and SSIM. PFGDM outperformed all traditional and diffusion model-based methods. PFGDM reconstructs high-quality LA-CBCTs under very-limited gantry angles, allowing faster and more flexible CBCT scans with dose reductions.
Abstract:Effectively and efficiently adapting a pre-trained language model (PLM) for human-centered text understanding (HCTU) is challenging since user tokens are million-level in most personalized applications and do not have concrete explicit semantics. A standard and parameter-efficient approach (e.g., LoRA) necessitates memorizing numerous suits of adapters for each user. In this work, we introduce a personalized LoRA (PLoRA) with a plug-and-play (PnP) framework for the HCTU task. PLoRA is effective, parameter-efficient, and dynamically deploying in PLMs. Moreover, a personalized dropout and a mutual information maximizing strategies are adopted and hence the proposed PLoRA can be well adapted to few/zero-shot learning scenarios for the cold-start issue. Experiments conducted on four benchmark datasets show that the proposed method outperforms existing methods in full/few/zero-shot learning scenarios for the HCTU task, even though it has fewer trainable parameters. For reproducibility, the code for this paper is available at: https://github.com/yoyo-yun/PLoRA.
Abstract:Autonomous driving is an emerging technology that has advanced rapidly over the last decade. Modern transportation is expected to benefit greatly from a wise decision-making framework of autonomous vehicles, including the improvement of mobility and the minimization of risks and travel time. However, existing methods either ignore the complexity of environments only fitting straight roads, or ignore the impact on surrounding vehicles during optimization phases, leading to weak environmental adaptability and incomplete optimization objectives. To address these limitations, we propose a parameterized decision-making framework with multi-modal perception based on deep reinforcement learning, called AUTO. We conduct a comprehensive perception to capture the state features of various traffic participants around the autonomous vehicle, based on which we design a graph-based model to learn a state representation of the multi-modal semantic features. To distinguish between lane-following and lane-changing, we decompose an action of the autonomous vehicle into a parameterized action structure that first decides whether to change lanes and then computes an exact action to execute. A hybrid reward function takes into account aspects of safety, traffic efficiency, passenger comfort, and impact to guide the framework to generate optimal actions. In addition, we design a regularization term and a multi-worker paradigm to enhance the training. Extensive experiments offer evidence that AUTO can advance state-of-the-art in terms of both macroscopic and microscopic effectiveness.
Abstract:Dimensional representations of speech emotions such as the arousal-valence (AV) representation provide a continuous and fine-grained description and control than their categorical counterparts. They have wide applications in tasks such as dynamic emotion understanding and expressive text-to-speech synthesis. Existing methods that predict the dimensional emotion representation from speech cast it as a supervised regression task. These methods face data scarcity issues, as dimensional annotations are much harder to acquire than categorical labels. In this work, we propose to learn the AV representation from categorical emotion labels of speech. We start by learning a rich and emotion-relevant high-dimensional speech feature representation using self-supervised pre-training and emotion classification fine-tuning. This representation is then mapped to the 2D AV space according to psychological findings through anchored dimensionality reduction. Experiments show that our method achieves a Concordance Correlation Coefficient (CCC) performance comparable to state-of-the-art supervised regression methods on IEMOCAP without leveraging ground-truth AV annotations during training. This validates our proposed approach on AV prediction. Furthermore, visualization of AV predictions on MEAD and EmoDB datasets shows the interpretability of the learned AV representations.