Abstract:Talking head video generation aims to generate a realistic talking head video that preserves the person's identity from a source image and the motion from a driving video. Despite the promising progress made in the field, it remains a challenging and critical problem to generate videos with accurate poses and fine-grained facial details simultaneously. Essentially, facial motion is often highly complex to model precisely, and the one-shot source face image cannot provide sufficient appearance guidance during generation due to dynamic pose changes. To tackle the problem, we propose to jointly learn motion and appearance codebooks and perform multi-scale codebook compensation to effectively refine both the facial motion conditions and appearance features for talking face image decoding. Specifically, the designed multi-scale motion and appearance codebooks are learned simultaneously in a unified framework to store representative global facial motion flow and appearance patterns. Then, we present a novel multi-scale motion and appearance compensation module, which utilizes a transformer-based codebook retrieval strategy to query complementary information from the two codebooks for joint motion and appearance compensation. The entire process produces motion flows of greater flexibility and appearance features with fewer distortions across different scales, resulting in a high-quality talking head video generation framework. Extensive experiments on various benchmarks validate the effectiveness of our approach and demonstrate superior generation results from both qualitative and quantitative perspectives when compared to state-of-the-art competitors.
Abstract:In recent years, simultaneous learning of multiple dense prediction tasks with partially annotated label data has emerged as an important research area. Previous works primarily focus on constructing cross-task consistency or conducting adversarial training to regularize cross-task predictions, which achieve promising performance improvements, while still suffering from the lack of direct pixel-wise supervision for multi-task dense predictions. To tackle this challenge, we propose a novel approach to optimize a set of learnable hierarchical task tokens, including global and fine-grained ones, to discover consistent pixel-wise supervision signals in both feature and prediction levels. Specifically, the global task tokens are designed for effective cross-task feature interactions in a global context. Then, a group of fine-grained task-specific spatial tokens for each task is learned from the corresponding global task tokens. It is embedded to have dense interactions with each task-specific feature map. The learned global and local fine-grained task tokens are further used to discover pseudo task-specific dense labels at different levels of granularity, and they can be utilized to directly supervise the learning of the multi-task dense prediction framework. Extensive experimental results on challenging NYUD-v2, Cityscapes, and PASCAL Context datasets demonstrate significant improvements over existing state-of-the-art methods for partially annotated multi-task dense prediction.
Abstract:In NeRF, a critical problem is to effectively estimate the occupancy to guide empty-space skipping and point sampling. Grid-based methods work well for small-scale scenes. However, on large-scale scenes, they are limited by predefined bounding boxes, grid resolutions, and high memory usage for grid updates, and thus struggle to speed up training for large-scale, irregularly bounded and complex urban scenes without sacrificing accuracy. In this paper, we propose to learn a continuous and compact large-scale occupancy network, which can classify 3D points as occupied or unoccupied points. We train this occupancy network end-to-end together with the radiance field in a self-supervised manner by three designs. First, we propose a novel imbalanced occupancy loss to regularize the occupancy network. It makes the occupancy network effectively control the ratio of unoccupied and occupied points, motivated by the prior that most of 3D scene points are unoccupied. Second, we design an imbalanced architecture containing a large scene network and a small empty space network to separately encode occupied and unoccupied points classified by the occupancy network. This imbalanced structure can effectively model the imbalanced nature of occupied and unoccupied regions. Third, we design an explicit density loss to guide the occupancy network, making the density of unoccupied points smaller. As far as we know, we are the first to learn a continuous and compact occupancy of large-scale NeRF by a network. In our experiments, our occupancy network can quickly learn more compact, accurate and smooth occupancy compared to the occupancy grid. With our learned occupancy as guidance for empty space skipping on challenging large-scale benchmarks, our method consistently obtains higher accuracy compared to the occupancy grid, and our method can speed up state-of-the-art NeRF methods without sacrificing accuracy.
Abstract:Generating lifelike human motions from descriptive texts has experienced remarkable research focus in the recent years, propelled by the emerging requirements of digital humans.Despite impressive advances, existing approaches are often constrained by limited control modalities, task specificity, and focus solely on body motion representations.In this paper, we present MotionGPT-2, a unified Large Motion-Language Model (LMLM) that addresses these limitations. MotionGPT-2 accommodates multiple motion-relevant tasks and supporting multimodal control conditions through pre-trained Large Language Models (LLMs). It quantizes multimodal inputs-such as text and single-frame poses-into discrete, LLM-interpretable tokens, seamlessly integrating them into the LLM's vocabulary. These tokens are then organized into unified prompts, guiding the LLM to generate motion outputs through a pretraining-then-finetuning paradigm. We also show that the proposed MotionGPT-2 is highly adaptable to the challenging 3D holistic motion generation task, enabled by the innovative motion discretization framework, Part-Aware VQVAE, which ensures fine-grained representations of body and hand movements. Extensive experiments and visualizations validate the effectiveness of our method, demonstrating the adaptability of MotionGPT-2 across motion generation, motion captioning, and generalized motion completion tasks.
Abstract:This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we develop a data engine that efficiently generates 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long, based on human-annotated data. This is currently the largest egocentric QA dataset. Second, we contribute a challenging egocentric QA benchmark with 629 videos and 7,026 questions to evaluate the models' ability in recognizing and memorizing visual details across videos of varying lengths. We introduce a new de-biasing evaluation method to help mitigate the unavoidable language bias present in the models being evaluated. Third, we propose a specialized multimodal architecture featuring a novel "Memory Pointer Prompting" mechanism. This design includes a global glimpse step to gain an overarching understanding of the entire video and identify key visual information, followed by a fallback step that utilizes the key visual information to generate responses. This enables the model to more effectively comprehend extended video content. With the data, benchmark, and model, we successfully build MM-Ego, an egocentric multimodal LLM that shows powerful performance on egocentric video understanding.
Abstract:Neural Radiance Fields (NeRF) are widely used for novel-view synthesis and have been adapted for 3D Object Detection (3DOD), offering a promising approach to 3DOD through view-synthesis representation. However, NeRF faces inherent limitations: (i) limited representational capacity for 3DOD due to its implicit nature, and (ii) slow rendering speeds. Recently, 3D Gaussian Splatting (3DGS) has emerged as an explicit 3D representation that addresses these limitations. Inspired by these advantages, this paper introduces 3DGS into 3DOD for the first time, identifying two main challenges: (i) Ambiguous spatial distribution of Gaussian blobs: 3DGS primarily relies on 2D pixel-level supervision, resulting in unclear 3D spatial distribution of Gaussian blobs and poor differentiation between objects and background, which hinders 3DOD; (ii) Excessive background blobs: 2D images often include numerous background pixels, leading to densely reconstructed 3DGS with many noisy Gaussian blobs representing the background, negatively affecting detection. To tackle the challenge (i), we leverage the fact that 3DGS reconstruction is derived from 2D images, and propose an elegant and efficient solution by incorporating 2D Boundary Guidance to significantly enhance the spatial distribution of Gaussian blobs, resulting in clearer differentiation between objects and their background. To address the challenge (ii), we propose a Box-Focused Sampling strategy using 2D boxes to generate object probability distribution in 3D spaces, allowing effective probabilistic sampling in 3D to retain more object blobs and reduce noisy background blobs. Benefiting from our designs, our 3DGS-DET significantly outperforms the SOTA NeRF-based method, NeRF-Det, achieving improvements of +6.6 on mAP@0.25 and +8.1 on mAP@0.5 for the ScanNet dataset, and impressive +31.5 on mAP@0.25 for the ARKITScenes dataset.
Abstract:Audio-driven talking head synthesis strives to generate lifelike video portraits from provided audio. The diffusion model, recognized for its superior quality and robust generalization, has been explored for this task. However, establishing a robust correspondence between temporal audio cues and corresponding spatial facial expressions with diffusion models remains a significant challenge in talking head generation. To bridge this gap, we present DreamHead, a hierarchical diffusion framework that learns spatial-temporal correspondences in talking head synthesis without compromising the model's intrinsic quality and adaptability.~DreamHead learns to predict dense facial landmarks from audios as intermediate signals to model the spatial and temporal correspondences.~Specifically, a first hierarchy of audio-to-landmark diffusion is first designed to predict temporally smooth and accurate landmark sequences given audio sequence signals. Then, a second hierarchy of landmark-to-image diffusion is further proposed to produce spatially consistent facial portrait videos, by modeling spatial correspondences between the dense facial landmark and appearance. Extensive experiments show that proposed DreamHead can effectively learn spatial-temporal consistency with the designed hierarchical diffusion and produce high-fidelity audio-driven talking head videos for multiple identities.
Abstract:This paper introduces Motion-oriented Compositional Neural Radiance Fields (MoCo-NeRF), a framework designed to perform free-viewpoint rendering of monocular human videos via novel non-rigid motion modeling approach. In the context of dynamic clothed humans, complex cloth dynamics generate non-rigid motions that are intrinsically distinct from skeletal articulations and critically important for the rendering quality. The conventional approach models non-rigid motions as spatial (3D) deviations in addition to skeletal transformations. However, it is either time-consuming or challenging to achieve optimal quality due to its high learning complexity without a direct supervision. To target this problem, we propose a novel approach of modeling non-rigid motions as radiance residual fields to benefit from more direct color supervision in the rendering and utilize the rigid radiance fields as a prior to reduce the complexity of the learning process. Our approach utilizes a single multiresolution hash encoding (MHE) to concurrently learn the canonical T-pose representation from rigid skeletal motions and the radiance residual field for non-rigid motions. Additionally, to further improve both training efficiency and usability, we extend MoCo-NeRF to support simultaneous training of multiple subjects within a single framework, thanks to our effective design for modeling non-rigid motions. This scalability is achieved through the integration of a global MHE and learnable identity codes in addition to multiple local MHEs. We present extensive results on ZJU-MoCap and MonoCap, clearly demonstrating state-of-the-art performance in both single- and multi-subject settings. The code and model will be made publicly available at the project page: https://stevejaehyeok.github.io/publications/moco-nerf.
Abstract:One-shot talking head video generation uses a source image and driving video to create a synthetic video where the source person's facial movements imitate those of the driving video. However, differences in scale between the source and driving images remain a challenge for face reenactment. Existing methods attempt to locate a frame in the driving video that aligns best with the source image, but imprecise alignment can result in suboptimal outcomes. To this end, we introduce a scale transformation module that can automatically adjust the scale of the driving image to fit that of the source image, by using the information of scale difference maintained in the detected keypoints of the source image and the driving frame. Furthermore, to keep perceiving the scale information of faces during the generation process, we incorporate the scale information learned from the scale transformation module into each layer of the generation process to produce a final result with an accurate scale. Our method can perform accurate motion transfer between the two images without any anchor frame, achieved through the contributions of the proposed online scale transformation facial reenactment network. Extensive experiments have demonstrated that our proposed method adjusts the scale of the driving face automatically according to the source face, and generates high-quality faces with an accurate scale in the cross-identity facial reenactment.
Abstract:Reinforcement learning via sequence modeling has shown remarkable promise in autonomous systems, harnessing the power of offline datasets to make informed decisions in simulated environments. However, the full potential of such methods in complex dynamic environments remain to be discovered. In autonomous driving domain, learning-based agents face significant challenges when transferring knowledge from simulated to real-world settings and the performance is also significantly impacted by data distribution shift. To address these issue, we propose Sample-efficient Imitative Multi-token Decision Transformer (SimDT). SimDT introduces multi-token prediction, imitative online learning and prioritized experience replay to Decision Transformer. The performance is evaluated through empirical experiments and results exceed popular imitation and reinforcement learning algorithms on Waymax benchmark.