Abstract:Recent advancements in industrial anomaly detection have been hindered by the lack of realistic datasets that accurately represent real-world conditions. Existing algorithms are often developed and evaluated using idealized datasets, which deviate significantly from real-life scenarios characterized by environmental noise and data corruption such as fluctuating lighting conditions, variable object poses, and unstable camera positions. To address this gap, we introduce the Realistic Anomaly Detection (RAD) dataset, the first multi-view RGB-based anomaly detection dataset specifically collected using a real robot arm, providing unique and realistic data scenarios. RAD comprises 4765 images across 13 categories and 4 defect types, collected from more than 50 viewpoints, providing a comprehensive and realistic benchmark. This multi-viewpoint setup mirrors real-world conditions where anomalies may not be detectable from every perspective. Moreover, by sampling varying numbers of views, the algorithm's performance can be comprehensively evaluated across different viewpoints. This approach enhances the thoroughness of performance assessment and helps improve the algorithm's robustness. Besides, to support 3D multi-view reconstruction algorithms, we propose a data augmentation method to improve the accuracy of pose estimation and facilitate the reconstruction of 3D point clouds. We systematically evaluate state-of-the-art RGB-based and point cloud-based models using RAD, identifying limitations and future research directions. The code and dataset could found at https://github.com/kaichen-z/RAD
Abstract:Location information is pivotal for the automation and intelligence of terminal devices and edge-cloud IoT systems, such as autonomous vehicles and augmented reality. However, achieving reliable positioning across diverse IoT applications remains challenging due to significant training costs and the necessity of densely collected data. To tackle these issues, we have innovatively applied the selective state space (SSM) model to visual localization, introducing a new model named MambaLoc. The proposed model demonstrates exceptional training efficiency by capitalizing on the SSM model's strengths in efficient feature extraction, rapid computation, and memory optimization, and it further ensures robustness in sparse data environments due to its parameter sparsity. Additionally, we propose the Global Information Selector (GIS), which leverages selective SSM to implicitly achieve the efficient global feature extraction capabilities of Non-local Neural Networks. This design leverages the computational efficiency of the SSM model alongside the Non-local Neural Networks' capacity to capture long-range dependencies with minimal layers. Consequently, the GIS enables effective global information capture while significantly accelerating convergence. Our extensive experimental validation using public indoor and outdoor datasets first demonstrates our model's effectiveness, followed by evidence of its versatility with various existing localization models. Our code and models are publicly available to support further research and development in this area.
Abstract:Despite the photorealistic novel view synthesis (NVS) performance achieved by the original 3D Gaussian splatting (3DGS), its rendering quality significantly degrades with sparse input views. This performance drop is mainly caused by the limited number of initial points generated from the sparse input, insufficient supervision during the training process, and inadequate regularization of the oversized Gaussian ellipsoids. To handle these issues, we propose the LoopSparseGS, a loop-based 3DGS framework for the sparse novel view synthesis task. In specific, we propose a loop-based Progressive Gaussian Initialization (PGI) strategy that could iteratively densify the initialized point cloud using the rendered pseudo images during the training process. Then, the sparse and reliable depth from the Structure from Motion, and the window-based dense monocular depth are leveraged to provide precise geometric supervision via the proposed Depth-alignment Regularization (DAR). Additionally, we introduce a novel Sparse-friendly Sampling (SFS) strategy to handle oversized Gaussian ellipsoids leading to large pixel errors. Comprehensive experiments on four datasets demonstrate that LoopSparseGS outperforms existing state-of-the-art methods for sparse-input novel view synthesis, across indoor, outdoor, and object-level scenes with various image resolutions.
Abstract:Recent advances in predicting 6D grasp poses from a single depth image have led to promising performance in robotic grasping. However, previous grasping models face challenges in cluttered environments where nearby objects impact the target object's grasp. In this paper, we first establish a new benchmark dataset for TARget-driven Grasping under Occlusions, named TARGO. We make the following contributions: 1) We are the first to study the occlusion level of grasping. 2) We set up an evaluation benchmark consisting of large-scale synthetic data and part of real-world data, and we evaluated five grasp models and found that even the current SOTA model suffers when the occlusion level increases, leaving grasping under occlusion still a challenge. 3) We also generate a large-scale training dataset via a scalable pipeline, which can be used to boost the performance of grasping under occlusion and generalized to the real world. 4) We further propose a transformer-based grasping model involving a shape completion module, termed TARGO-Net, which performs most robustly as occlusion increases. Our benchmark dataset can be found at https://TARGO-benchmark.github.io/.
Abstract:The ability to reflect on and correct failures is crucial for robotic systems to interact stably with real-life objects.Observing the generalization and reasoning capabilities of Multimodal Large Language Models (MLLMs), previous approaches have aimed to utilize these models to enhance robotic systems accordingly.However, these methods typically focus on high-level planning corrections using an additional MLLM, with limited utilization of failed samples to correct low-level contact poses. To address this gap, we propose an Autonomous Interactive Correction (AIC) MLLM, which makes use of previous low-level interaction experiences to correct SE(3) pose predictions. Specifically, AIC MLLM is initially fine-tuned to acquire both pose prediction and feedback prompt comprehension abilities.We carefully design two types of prompt instructions through interactions with objects: 1) visual masks to highlight unmovable parts for position correction, and 2)textual descriptions to indicate potential directions for rotation correction.During inference, a Feedback Information Extraction module is introduced to recognize the failure cause, allowing AIC MLLM to adaptively correct the pose prediction using the corresponding prompts.To further enhance manipulation stability, we devise a Test Time Adaptation strategy that enables AIC MLLM to better adapt to the current scene configuration.Finally, extensive experiments are conducted in both simulated and real-world environments to evaluate the proposed method. The results demonstrate that our AIC MLLM can efficiently correct failure samples by leveraging interaction experience prompts.Real-world demonstration can be found at https://sites.google.com/view/aic-mllm
Abstract:This paper addresses the challenge of reconstructing surfaces from sparse view inputs, where ambiguity and occlusions due to missing information pose significant hurdles. We present a novel approach, named EpiS, that incorporates Epipolar information into the reconstruction process. Existing methods in sparse-view neural surface learning have mainly focused on mean and variance considerations using cost volumes for feature extraction. In contrast, our method aggregates coarse information from the cost volume into Epipolar features extracted from multiple source views, enabling the generation of fine-grained Signal Distance Function (SDF)-aware features. Additionally, we employ an attention mechanism along the line dimension to facilitate feature fusion based on the SDF feature. Furthermore, to address the information gaps in sparse conditions, we integrate depth information from monocular depth estimation using global and local regularization techniques. The global regularization utilizes a triplet loss function, while the local regularization employs a derivative loss function. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods, especially in cases with sparse and generalizable conditions.
Abstract:A fundamental objective in robot manipulation is to enable models to comprehend visual scenes and execute actions. Although existing robot Multimodal Large Language Models (MLLMs) can handle a range of basic tasks, they still face challenges in two areas: 1) inadequate reasoning ability to tackle complex tasks, and 2) high computational costs for MLLM fine-tuning and inference. The recently proposed state space model (SSM) known as Mamba demonstrates promising capabilities in non-trivial sequence modeling with linear inference complexity. Inspired by this, we introduce RoboMamba, an end-to-end robotic MLLM that leverages the Mamba model to deliver both robotic reasoning and action capabilities, while maintaining efficient fine-tuning and inference. Specifically, we first integrate the vision encoder with Mamba, aligning visual data with language embedding through co-training, empowering our model with visual common sense and robot-related reasoning. To further equip RoboMamba with action pose prediction abilities, we explore an efficient fine-tuning strategy with a simple policy head. We find that once RoboMamba possesses sufficient reasoning capability, it can acquire manipulation skills with minimal fine-tuning parameters (0.1\% of the model) and time (20 minutes). In experiments, RoboMamba demonstrates outstanding reasoning capabilities on general and robotic evaluation benchmarks. Meanwhile, our model showcases impressive pose prediction results in both simulation and real-world experiments, achieving inference speeds 7 times faster than existing robot MLLMs. Our project web page: https://sites.google.com/view/robomamba-web
Abstract:Robot manipulation policies have shown unsatisfactory action performance when confronted with novel task or object instances. Hence, the capability to automatically detect and self-correct failure action is essential for a practical robotic system. Recently, Multimodal Large Language Models (MLLMs) have shown promise in visual instruction following and demonstrated strong reasoning abilities in various tasks. To unleash general MLLMs as an end-to-end robotic agent, we introduce a Self-Corrected (SC)-MLLM, equipping our model not only to predict end-effector poses but also to autonomously recognize and correct failure actions. Specifically, we first conduct parameter-efficient fine-tuning to empower MLLM with pose prediction ability, which is reframed as a language modeling problem. When facing execution failures, our model learns to identify low-level action error causes (i.e., position and rotation errors) and adaptively seeks prompt feedback from experts. Based on the feedback, SC-MLLM rethinks the current failure scene and generates the corrected actions. Furthermore, we design a continuous policy learning method for successfully corrected samples, enhancing the model's adaptability to the current scene configuration and reducing the frequency of expert intervention. To evaluate our SC-MLLM, we conduct extensive experiments in both simulation and real-world settings. SC-MLLM agent significantly improve manipulation accuracy compared to previous state-of-the-art robotic MLLM (ManipLLM), increasing from 57\% to 79\% on seen object categories and from 47\% to 69\% on unseen novel categories.
Abstract:Autonomous assembly in robotics and 3D vision presents significant challenges, particularly in ensuring assembly correctness. Presently, predominant methods such as MEPNet focus on assembling components based on manually provided images. However, these approaches often fall short in achieving satisfactory results for tasks requiring long-term planning. Concurrently, we observe that integrating a self-correction module can partially alleviate such issues. Motivated by this concern, we introduce the single-step assembly error correction task, which involves identifying and rectifying misassembled components. To support research in this area, we present the LEGO Error Correction Assembly Dataset (LEGO-ECA), comprising manual images for assembly steps and instances of assembly failures. Additionally, we propose the Self-Correct Assembly Network (SCANet), a novel method to address this task. SCANet treats assembled components as queries, determining their correctness in manual images and providing corrections when necessary. Finally, we utilize SCANet to correct the assembly results of MEPNet. Experimental results demonstrate that SCANet can identify and correct MEPNet's misassembled results, significantly improving the correctness of assembly. Our code and dataset are available at https://github.com/Yaser-wyx/SCANet.
Abstract:Despite the advancements in deep learning for camera relocalization tasks, obtaining ground truth pose labels required for the training process remains a costly endeavor. While current weakly supervised methods excel in lightweight label generation, their performance notably declines in scenarios with sparse views. In response to this challenge, we introduce WSCLoc, a system capable of being customized to various deep learning-based relocalization models to enhance their performance under weakly-supervised and sparse view conditions. This is realized with two stages. In the initial stage, WSCLoc employs a multilayer perceptron-based structure called WFT-NeRF to co-optimize image reconstruction quality and initial pose information. To ensure a stable learning process, we incorporate temporal information as input. Furthermore, instead of optimizing SE(3), we opt for $\mathfrak{sim}(3)$ optimization to explicitly enforce a scale constraint. In the second stage, we co-optimize the pre-trained WFT-NeRF and WFT-Pose. This optimization is enhanced by Time-Encoding based Random View Synthesis and supervised by inter-frame geometric constraints that consider pose, depth, and RGB information. We validate our approaches on two publicly available datasets, one outdoor and one indoor. Our experimental results demonstrate that our weakly-supervised relocalization solutions achieve superior pose estimation accuracy in sparse-view scenarios, comparable to state-of-the-art camera relocalization methods. We will make our code publicly available.