Peng Cheng Laboratory
Abstract:In this paper, we find that the complexity of interactions encoded by a deep neural network (DNN) can explain its generalization power. We also discover that the confusing samples of a DNN, which are represented by non-generalizable interactions, are determined by its low-layer parameters. In comparison, other factors, such as high-layer parameters and network architecture, have much less impact on the composition of confusing samples. Two DNNs with different low-layer parameters usually have fully different sets of confusing samples, even though they have similar performance. This finding extends the understanding of the lottery ticket hypothesis, and well explains distinctive representation power of different DNNs.
Abstract:Completing Long-Horizon (LH) tasks in open-ended worlds is an important yet difficult problem for embodied agents. Existing approaches suffer from two key challenges: (1) they heavily rely on experiences obtained from human-created data or curricula, lacking the ability to continuously update multimodal experiences, and (2) they may encounter catastrophic forgetting issues when faced with new tasks, lacking the ability to continuously update world knowledge. To solve these challenges, this paper presents EvoAgent, an autonomous-evolving agent with a continual World Model (WM), which can autonomously complete various LH tasks across environments through self-planning, self-control, and self-reflection, without human intervention. Our proposed EvoAgent contains three modules, i.e., i) the memory-driven planner which uses an LLM along with the WM and interaction memory, to convert LH tasks into executable sub-tasks; ii) the WM-guided action controller which leverages WM to generate low-level actions and incorporates a self-verification mechanism to update multimodal experiences; iii) the experience-inspired reflector which implements a two-stage curriculum learning algorithm to select experiences for task-adaptive WM updates. Moreover, we develop a continual World Model for EvoAgent, which can continuously update the multimodal experience pool and world knowledge through closed-loop dynamics. We conducted extensive experiments on Minecraft, compared with existing methods, EvoAgent can achieve an average success rate improvement of 105% and reduce ineffective actions by more than 6x.
Abstract:In our daily lives, we can naturally convey instructions for the spatial manipulation of objects using words and gestures. Transposing this form of interaction into virtual reality (VR) object manipulation can be beneficial. We propose VR Mover, an LLM-empowered solution that can understand and interpret the user's vocal instruction to support object manipulation. By simply pointing and speaking, the LLM can manipulate objects without structured input. Our user study demonstrates that VR Mover enhances user usability, overall experience and performance on multi-object manipulation, while also reducing workload and arm fatigue. Users prefer the proposed natural interface for broad movements and may complementarily switch to gizmos or virtual hands for finer adjustments. These findings are believed to contribute to design implications for future LLM-based object manipulation interfaces, highlighting the potential for more intuitive and efficient user interactions in VR environments.
Abstract:User interface understanding with vision-language models has received much attention due to its potential for enabling next-generation software automation. However, existing UI datasets either only provide large-scale context-free element annotations or contextualized functional descriptions for elements at a much smaller scale. In this work, we propose the \methodname{} pipeline for automatically annotating UI elements with detailed functionality descriptions at scale. Specifically, we leverage large language models (LLMs) to infer element functionality by comparing the UI content changes before and after simulated interactions with specific UI elements. To improve annotation quality, we propose LLM-aided rejection and verification, eliminating invalid and incorrect annotations without human labor. We construct an \methodname{}-704k dataset using the proposed pipeline, featuring multi-resolution, multi-device screenshots, diverse data domains, and detailed functionality annotations that have never been provided by previous datasets. Human evaluation shows that the AutoGUI pipeline achieves annotation correctness comparable to trained human annotators. Extensive experimental results show that our \methodname{}-704k dataset remarkably enhances VLM's UI grounding capabilities, exhibits significant scaling effects, and outperforms existing web pre-training data types. We envision AutoGUI as a scalable pipeline for generating massive data to build GUI-oriented VLMs. AutoGUI dataset can be viewed at this anonymous URL: https://autogui-project.github.io/.
Abstract:In recent years, as smart home systems have become more widespread, security concerns within these environments have become a growing threat. Currently, most smart home security solutions, such as anomaly detection and behavior prediction models, are trained using fixed datasets that are precollected. However, the process of dataset collection is time-consuming and lacks the flexibility needed to adapt to the constantly evolving smart home environment. Additionally, the collection of personal data raises significant privacy concerns for users. Lately, large language models (LLMs) have emerged as a powerful tool for a wide range of tasks across diverse application domains, thanks to their strong capabilities in natural language processing, reasoning, and problem-solving. In this paper, we propose an LLM-based synthetic dataset generation IoTGen framework to enhance the generalization of downstream smart home intelligent models. By generating new synthetic datasets that reflect changes in the environment, smart home intelligent models can be retrained to overcome the limitations of fixed and outdated data, allowing them to better align with the dynamic nature of real-world home environments. Specifically, we first propose a Structure Pattern Perception Compression (SPPC) method tailored for IoT behavior data, which preserves the most informative content in the data while significantly reducing token consumption. Then, we propose a systematic approach to create prompts and implement data generation to automatically generate IoT synthetic data with normative and reasonable properties, assisting task models in adaptive training to improve generalization and real-world performance.
Abstract:Aspect-based sentiment analysis (ABSA) aims to identify four sentiment elements, including aspect term, aspect category, opinion term, and sentiment polarity. These elements construct the complete picture of sentiments. The most challenging task, aspect sentiment quad prediction (ASQP), predicts these elements simultaneously, hindered by difficulties in accurately coupling different sentiment elements. A key challenge is insufficient annotated data that limits the capability of models in semantic understanding and reasoning about quad prediction. To address this, we propose stepwise task augmentation and relation learning (STAR), a strategy inspired by human reasoning. STAR constructs auxiliary data to learn quadruple relationships incrementally by augmenting with pairwise and overall relation tasks derived from training data. By encouraging the model to infer causal relationships among sentiment elements without requiring additional annotations, STAR effectively enhances quad prediction. Extensive experiments demonstrate the proposed STAR exhibits superior performance on four benchmark datasets.
Abstract:Considering the significance of proteins, computational protein science has always been a critical scientific field, dedicated to revealing knowledge and developing applications within the protein sequence-structure-function paradigm. In the last few decades, Artificial Intelligence (AI) has made significant impacts in computational protein science, leading to notable successes in specific protein modeling tasks. However, those previous AI models still meet limitations, such as the difficulty in comprehending the semantics of protein sequences, and the inability to generalize across a wide range of protein modeling tasks. Recently, LLMs have emerged as a milestone in AI due to their unprecedented language processing & generalization capability. They can promote comprehensive progress in fields rather than solving individual tasks. As a result, researchers have actively introduced LLM techniques in computational protein science, developing protein Language Models (pLMs) that skillfully grasp the foundational knowledge of proteins and can be effectively generalized to solve a diversity of sequence-structure-function reasoning problems. While witnessing prosperous developments, it's necessary to present a systematic overview of computational protein science empowered by LLM techniques. First, we summarize existing pLMs into categories based on their mastered protein knowledge, i.e., underlying sequence patterns, explicit structural and functional information, and external scientific languages. Second, we introduce the utilization and adaptation of pLMs, highlighting their remarkable achievements in promoting protein structure prediction, protein function prediction, and protein design studies. Then, we describe the practical application of pLMs in antibody design, enzyme design, and drug discovery. Finally, we specifically discuss the promising future directions in this fast-growing field.
Abstract:This paper introduce LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We developed a systematic approach that organizes videos into a hierarchical tree structure and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.); and 3) explicit timestamp labels for relevant events. LongViTU also serves as a benchmark for instruction following in long-form and streaming video understanding. We evaluate the open-source state-of-the-art long video understanding model, LongVU, and the commercial model, Gemini-1.5-Pro, on our benchmark. They achieve GPT-4 scores of 49.9 and 52.3, respectively, underscoring the substantial challenge posed by our benchmark. Further supervised fine-tuning (SFT) on LongVU led to performance improvements of 12.0% on our benchmark, 2.2% on the in-distribution (ID) benchmark EgoSchema, 1.0%, 2.2% and 1.2% on the out-of-distribution (OOD) benchmarks VideoMME (Long), WorldQA and OpenEQA, respectively. These outcomes demonstrate LongViTU's high data quality and robust OOD generalizability.
Abstract:Graph condensation reduces the size of large graphs while preserving performance, addressing the scalability challenges of Graph Neural Networks caused by computational inefficiencies on large datasets. Existing methods often rely on bi-level optimization, requiring extensive GNN training and limiting their scalability. To address these issues, this paper proposes Graph Condensation via Gaussian Process (GCGP), a novel and computationally efficient approach to graph condensation. GCGP utilizes a Gaussian Process (GP), with the condensed graph serving as observations, to estimate the posterior distribution of predictions. This approach eliminates the need for the iterative and resource-intensive training typically required by GNNs. To enhance the capability of the GCGP in capturing dependencies between function values, we derive a specialized covariance function that incorporates structural information. This covariance function broadens the receptive field of input nodes by local neighborhood aggregation, thereby facilitating the representation of intricate dependencies within the nodes. To address the challenge of optimizing binary structural information in condensed graphs, Concrete random variables are utilized to approximate the binary adjacency matrix in a continuous counterpart. This relaxation process allows the adjacency matrix to be represented in a differentiable form, enabling the application of gradient-based optimization techniques to discrete graph structures. Experimental results show that the proposed GCGP method efficiently condenses large-scale graph data while preserving predictive performance, addressing the scalability and efficiency challenges. The implementation of our method is publicly available at https://github.com/WANGLin0126/GCGP.
Abstract:With the growing significance of network security, the classification of encrypted traffic has emerged as an urgent challenge. Traditional byte-based traffic analysis methods are constrained by the rigid granularity of information and fail to fully exploit the diverse correlations between bytes. To address these limitations, this paper introduces MH-Net, a novel approach for classifying network traffic that leverages multi-view heterogeneous traffic graphs to model the intricate relationships between traffic bytes. The essence of MH-Net lies in aggregating varying numbers of traffic bits into multiple types of traffic units, thereby constructing multi-view traffic graphs with diverse information granularities. By accounting for different types of byte correlations, such as header-payload relationships, MH-Net further endows the traffic graph with heterogeneity, significantly enhancing model performance. Notably, we employ contrastive learning in a multi-task manner to strengthen the robustness of the learned traffic unit representations. Experiments conducted on the ISCX and CIC-IoT datasets for both the packet-level and flow-level traffic classification tasks demonstrate that MH-Net achieves the best overall performance compared to dozens of SOTA methods.