Peng Cheng Laboratory
Abstract:Transformer models have achieved remarkable success in sequential recommender systems (SRSs). However, computing the attention matrix in traditional dot-product attention mechanisms results in a quadratic complexity with sequence lengths, leading to high computational costs for long-term sequential recommendation. Motivated by the above observation, we propose a novel L2-Normalized Linear Attention for the Transformer-based Sequential Recommender Systems (LinRec), which theoretically improves efficiency while preserving the learning capabilities of the traditional dot-product attention. Specifically, by thoroughly examining the equivalence conditions of efficient attention mechanisms, we show that LinRec possesses linear complexity while preserving the property of attention mechanisms. In addition, we reveal its latent efficiency properties by interpreting the proposed LinRec mechanism through a statistical lens. Extensive experiments are conducted based on two public benchmark datasets, demonstrating that the combination of LinRec and Transformer models achieves comparable or even superior performance than state-of-the-art Transformer-based SRS models while significantly improving time and memory efficiency.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:Hyperbolic representation learning is well known for its ability to capture hierarchical information. However, the distance between samples from different levels of hierarchical classes can be required large. We reveal that the hyperbolic discriminant objective forces the backbone to capture this hierarchical information, which may inevitably increase the Lipschitz constant of the backbone. This can hinder the full utilization of the backbone's generalization ability. To address this issue, we introduce second-order pooling into hyperbolic representation learning, as it naturally increases the distance between samples without compromising the generalization ability of the input features. In this way, the Lipschitz constant of the backbone does not necessarily need to be large. However, current off-the-shelf low-dimensional bilinear pooling methods cannot be directly employed in hyperbolic representation learning because they inevitably reduce the distance expansion capability. To solve this problem, we propose a kernel approximation regularization, which enables the low-dimensional bilinear features to approximate the kernel function well in low-dimensional space. Finally, we conduct extensive experiments on graph-structured datasets to demonstrate the effectiveness of the proposed method.
Abstract:We introduce a cutting-edge video compression framework tailored for the age of ubiquitous video data, uniquely designed to serve machine learning applications. Unlike traditional compression methods that prioritize human visual perception, our innovative approach focuses on preserving semantic information critical for deep learning accuracy, while efficiently reducing data size. The framework operates on a batch basis, capable of handling multiple video streams simultaneously, thereby enhancing scalability and processing efficiency. It features a dual reconstruction mode: lightweight for real-time applications requiring swift responses, and high-precision for scenarios where accuracy is crucial. Based on a designed deep learning algorithms, it adeptly segregates essential information from redundancy, ensuring machine learning tasks are fed with data of the highest relevance. Our experimental results, derived from diverse datasets including urban surveillance and autonomous vehicle navigation, showcase DMVC's superiority in maintaining or improving machine learning task accuracy, while achieving significant data compression. This breakthrough paves the way for smarter, scalable video analysis systems, promising immense potential across various applications from smart city infrastructure to autonomous systems, establishing a new benchmark for integrating video compression with machine learning.
Abstract:Mobile deep vision systems play a vital role in numerous scenarios. However, deep learning applications in mobile vision scenarios face problems such as tight computing resources. With the development of edge computing, the architecture of edge clouds has mitigated some of the issues related to limited computing resources. However, it has introduced increased latency. To address these challenges, we designed CloudEye which consists of Fast Inference Module, Feature Mining Module and Quality Encode Module. CloudEye is a real-time, efficient mobile visual perception system that leverages content information mining on edge servers in a mobile vision system environment equipped with edge servers and coordinated with cloud servers. Proven by sufficient experiments, we develop a prototype system that reduces network bandwidth usage by 69.50%, increases inference speed by 24.55%, and improves detection accuracy by 67.30%
Abstract:Memory is the foundation of all human activities; without memory, it would be nearly impossible for people to perform any task in daily life. With the development of Large Language Models (LLMs), their language capabilities are becoming increasingly comparable to those of humans. But do LLMs have memory? Based on current performance, LLMs do appear to exhibit memory. So, what is the underlying mechanism of this memory? Previous research has lacked a deep exploration of LLMs' memory capabilities and the underlying theory. In this paper, we use Universal Approximation Theorem (UAT) to explain the memory mechanism in LLMs. We also conduct experiments to verify the memory capabilities of various LLMs, proposing a new method to assess their abilities based on these memory ability. We argue that LLM memory operates like Schr\"odinger's memory, meaning that it only becomes observable when a specific memory is queried. We can only determine if the model retains a memory based on its output in response to the query; otherwise, it remains indeterminate. Finally, we expand on this concept by comparing the memory capabilities of the human brain and LLMs, highlighting the similarities and differences in their operational mechanisms.
Abstract:Graph Contrastive Learning (GCL) is a potent paradigm for self-supervised graph learning that has attracted attention across various application scenarios. However, GCL for learning on Text-Attributed Graphs (TAGs) has yet to be explored. Because conventional augmentation techniques like feature embedding masking cannot directly process textual attributes on TAGs. A naive strategy for applying GCL to TAGs is to encode the textual attributes into feature embeddings via a language model and then feed the embeddings into the following GCL module for processing. Such a strategy faces three key challenges: I) failure to avoid information loss, II) semantic loss during the text encoding phase, and III) implicit augmentation constraints that lead to uncontrollable and incomprehensible results. In this paper, we propose a novel GCL framework named LATEX-GCL to utilize Large Language Models (LLMs) to produce textual augmentations and LLMs' powerful natural language processing (NLP) abilities to address the three limitations aforementioned to pave the way for applying GCL to TAG tasks. Extensive experiments on four high-quality TAG datasets illustrate the superiority of the proposed LATEX-GCL method. The source codes and datasets are released to ease the reproducibility, which can be accessed via this link: https://anonymous.4open.science/r/LATEX-GCL-0712.
Abstract:Sequential recommendation methods are crucial in modern recommender systems for their remarkable capability to understand a user's changing interests based on past interactions. However, a significant challenge faced by current methods (e.g., RNN- or Transformer-based models) is to effectively and efficiently capture users' preferences by modeling long behavior sequences, which impedes their various applications like short video platforms where user interactions are numerous. Recently, an emerging architecture named Mamba, built on state space models (SSM) with efficient hardware-aware designs, has showcased the tremendous potential for sequence modeling, presenting a compelling avenue for addressing the challenge effectively. Inspired by this, we propose a novel generic and efficient sequential recommendation backbone, SSD4Rec, which explores the seamless adaptation of Mamba for sequential recommendations. Specifically, SSD4Rec marks the variable- and long-length item sequences with sequence registers and processes the item representations with bidirectional Structured State Space Duality (SSD) blocks. This not only allows for hardware-aware matrix multiplication but also empowers outstanding capabilities in variable-length and long-range sequence modeling. Extensive evaluations on four benchmark datasets demonstrate that the proposed model achieves state-of-the-art performance while maintaining near-linear scalability with user sequence length. Our code is publicly available at https://github.com/ZhangYifeng1995/SSD4Rec.
Abstract:Recent advances in text-to-image personalization have enabled high-quality and controllable image synthesis for user-provided concepts. However, existing methods still struggle to balance identity preservation with text alignment. Our approach is based on the fact that generating prompt-aligned images requires a precise semantic understanding of the prompt, which involves accurately processing the interactions between the new concept and its surrounding context tokens within the CLIP text encoder. To address this, we aim to embed the new concept properly into the input embedding space of the text encoder, allowing for seamless integration with existing tokens. We introduce Context Regularization (CoRe), which enhances the learning of the new concept's text embedding by regularizing its context tokens in the prompt. This is based on the insight that appropriate output vectors of the text encoder for the context tokens can only be achieved if the new concept's text embedding is correctly learned. CoRe can be applied to arbitrary prompts without requiring the generation of corresponding images, thus improving the generalization of the learned text embedding. Additionally, CoRe can serve as a test-time optimization technique to further enhance the generations for specific prompts. Comprehensive experiments demonstrate that our method outperforms several baseline methods in both identity preservation and text alignment. Code will be made publicly available.
Abstract:Topic taxonomy discovery aims at uncovering topics of different abstraction levels and constructing hierarchical relations between them. Unfortunately, most of prior work can hardly model semantic scopes of words and topics by holding the Euclidean embedding space assumption. What's worse, they infer asymmetric hierarchical relations by symmetric distances between topic embeddings. As a result, existing methods suffer from problems of low-quality topics at high abstraction levels and inaccurate hierarchical relations. To alleviate these problems, this paper develops a Box embedding-based Topic Model (BoxTM) that maps words and topics into the box embedding space, where the asymmetric metric is defined to properly infer hierarchical relations among topics. Additionally, our BoxTM explicitly infers upper-level topics based on correlation between specific topics through recursive clustering on topic boxes. Finally, extensive experiments validate high-quality of the topic taxonomy learned by BoxTM.