Peng Cheng Laboratory
Abstract:Implicit sentiment analysis (ISA) presents significant challenges due to the absence of salient cue words. Previous methods have struggled with insufficient data and limited reasoning capabilities to infer underlying opinions. Integrating multi-task learning (MTL) with large language models (LLMs) offers the potential to enable models of varying sizes to reliably perceive and recognize genuine opinions in ISA. However, existing MTL approaches are constrained by two sources of uncertainty: data-level uncertainty, arising from hallucination problems in LLM-generated contextual information, and task-level uncertainty, stemming from the varying capacities of models to process contextual information. To handle these uncertainties, we introduce MT-ISA, a novel MTL framework that enhances ISA by leveraging the generation and reasoning capabilities of LLMs through automatic MTL. Specifically, MT-ISA constructs auxiliary tasks using generative LLMs to supplement sentiment elements and incorporates automatic MTL to fully exploit auxiliary data. We introduce data-level and task-level automatic weight learning (AWL), which dynamically identifies relationships and prioritizes more reliable data and critical tasks, enabling models of varying sizes to adaptively learn fine-grained weights based on their reasoning capabilities. We investigate three strategies for data-level AWL, while also introducing homoscedastic uncertainty for task-level AWL. Extensive experiments reveal that models of varying sizes achieve an optimal balance between primary prediction and auxiliary tasks in MT-ISA. This underscores the effectiveness and adaptability of our approach.
Abstract:Large multimodal models (LMMs) have shown remarkable performance in the visual commonsense reasoning (VCR) task, which aims to answer a multiple-choice question based on visual commonsense within an image. However, the ability of LMMs to correct potential visual commonsense errors in the distractor upon their occurrence is yet under-explored. Drawing inspiration from how a human teacher crafts challenging distractors to test students' comprehension of the concepts or skills and assists them in identifying and correcting errors toward the answer, we are the pioneering research for LMMs to simulate this error correction process. To this end, we employ GPT-4 as a ``teacher'' to collect the explainable feedback dataset VCR-DF for error correction, which serves as a benchmark to evaluate the ability of LMMs to identify misconceptions and clarify reasons behind the error in VCR distractors toward final answers. In addition, we propose an LMM-based Pedagogical Expert Instructed Feedback Generation (PEIFG) model to incorporate the learnable expert prompts and multimodal instruction as guidance for feedback generation. Experimental results show that our PEIFG significantly outperforms existing LMMs. We believe that our benchmark provides a new direction for evaluating the capabilities of LMMs.
Abstract:In recent years, origin-destination (OD) demand prediction has gained significant attention for its profound implications in urban development. Existing data-driven deep learning methods primarily focus on the spatial or temporal dependency between regions yet neglecting regions' fundamental functional difference. Though knowledge-driven physical methods have characterised regions' functions by their radiation and attraction capacities, these functions are defined on numerical factors like population without considering regions' intrinsic nominal attributes, e.g., a region is a residential or industrial district. Moreover, the complicated relationships between two types of capacities, e.g., the radiation capacity of a residential district in the morning will be transformed into the attraction capacity in the evening, are totally missing from physical methods. In this paper, we not only generalize the physical radiation and attraction capacities into the deep learning framework with the extended capability to fulfil regions' functions, but also present a new model that captures the relationships between two types of capacities. Specifically, we first model regions' radiation and attraction capacities using a bilateral branch network, each equipped with regions' attribute representations. We then describe the transformation relationship of different capacities of the same region using a hypergraph-based parameter generation method. We finally unveil the competition relationship of different regions with the same attraction capacity through cluster-based adversarial learning. Extensive experiments on two datasets demonstrate the consistent improvements of our method over the state-of-the-art baselines, as well as the good explainability of regions' functions using their nominal attributes.
Abstract:Molecule discovery is a pivotal research field, impacting everything from the medicines we take to the materials we use. Recently, Large Language Models (LLMs) have been widely adopted in molecule understanding and generation, yet the alignments between molecules and their corresponding captions remain a significant challenge. Previous endeavours often treat the molecule as a general SMILES string or molecular graph, neglecting the fine-grained alignments between the molecular sub-structures and the descriptive textual phrases, which are crucial for accurate and explainable predictions. In this case, we introduce MolReFlect, a novel teacher-student framework designed to contextually perform the molecule-caption alignments in a fine-grained way. Our approach initially leverages a larger teacher LLM to label the detailed alignments by directly extracting critical phrases from molecule captions or SMILES strings and implying them to corresponding sub-structures or characteristics. To refine these alignments, we propose In-Context Selective Reflection, which retrieves previous extraction results as context examples for teacher LLM to reflect and lets a smaller student LLM select from in-context reflection and previous extraction results. Finally, we enhance the learning process of the student LLM through Chain-of-Thought In-Context Molecule Tuning, integrating the fine-grained alignments and the reasoning processes within the Chain-of-Thought format. Our experimental results demonstrate that MolReFlect enables LLMs like Mistral-7B to significantly outperform the previous baselines, achieving SOTA performance on the ChEBI-20 dataset. This advancement not only enhances the generative capabilities of LLMs in the molecule-caption translation task, but also contributes to a more explainable framework.
Abstract:Transformer models have achieved remarkable success in sequential recommender systems (SRSs). However, computing the attention matrix in traditional dot-product attention mechanisms results in a quadratic complexity with sequence lengths, leading to high computational costs for long-term sequential recommendation. Motivated by the above observation, we propose a novel L2-Normalized Linear Attention for the Transformer-based Sequential Recommender Systems (LinRec), which theoretically improves efficiency while preserving the learning capabilities of the traditional dot-product attention. Specifically, by thoroughly examining the equivalence conditions of efficient attention mechanisms, we show that LinRec possesses linear complexity while preserving the property of attention mechanisms. In addition, we reveal its latent efficiency properties by interpreting the proposed LinRec mechanism through a statistical lens. Extensive experiments are conducted based on two public benchmark datasets, demonstrating that the combination of LinRec and Transformer models achieves comparable or even superior performance than state-of-the-art Transformer-based SRS models while significantly improving time and memory efficiency.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:Hyperbolic representation learning is well known for its ability to capture hierarchical information. However, the distance between samples from different levels of hierarchical classes can be required large. We reveal that the hyperbolic discriminant objective forces the backbone to capture this hierarchical information, which may inevitably increase the Lipschitz constant of the backbone. This can hinder the full utilization of the backbone's generalization ability. To address this issue, we introduce second-order pooling into hyperbolic representation learning, as it naturally increases the distance between samples without compromising the generalization ability of the input features. In this way, the Lipschitz constant of the backbone does not necessarily need to be large. However, current off-the-shelf low-dimensional bilinear pooling methods cannot be directly employed in hyperbolic representation learning because they inevitably reduce the distance expansion capability. To solve this problem, we propose a kernel approximation regularization, which enables the low-dimensional bilinear features to approximate the kernel function well in low-dimensional space. Finally, we conduct extensive experiments on graph-structured datasets to demonstrate the effectiveness of the proposed method.
Abstract:We introduce a cutting-edge video compression framework tailored for the age of ubiquitous video data, uniquely designed to serve machine learning applications. Unlike traditional compression methods that prioritize human visual perception, our innovative approach focuses on preserving semantic information critical for deep learning accuracy, while efficiently reducing data size. The framework operates on a batch basis, capable of handling multiple video streams simultaneously, thereby enhancing scalability and processing efficiency. It features a dual reconstruction mode: lightweight for real-time applications requiring swift responses, and high-precision for scenarios where accuracy is crucial. Based on a designed deep learning algorithms, it adeptly segregates essential information from redundancy, ensuring machine learning tasks are fed with data of the highest relevance. Our experimental results, derived from diverse datasets including urban surveillance and autonomous vehicle navigation, showcase DMVC's superiority in maintaining or improving machine learning task accuracy, while achieving significant data compression. This breakthrough paves the way for smarter, scalable video analysis systems, promising immense potential across various applications from smart city infrastructure to autonomous systems, establishing a new benchmark for integrating video compression with machine learning.
Abstract:Mobile deep vision systems play a vital role in numerous scenarios. However, deep learning applications in mobile vision scenarios face problems such as tight computing resources. With the development of edge computing, the architecture of edge clouds has mitigated some of the issues related to limited computing resources. However, it has introduced increased latency. To address these challenges, we designed CloudEye which consists of Fast Inference Module, Feature Mining Module and Quality Encode Module. CloudEye is a real-time, efficient mobile visual perception system that leverages content information mining on edge servers in a mobile vision system environment equipped with edge servers and coordinated with cloud servers. Proven by sufficient experiments, we develop a prototype system that reduces network bandwidth usage by 69.50%, increases inference speed by 24.55%, and improves detection accuracy by 67.30%
Abstract:Memory is the foundation of all human activities; without memory, it would be nearly impossible for people to perform any task in daily life. With the development of Large Language Models (LLMs), their language capabilities are becoming increasingly comparable to those of humans. But do LLMs have memory? Based on current performance, LLMs do appear to exhibit memory. So, what is the underlying mechanism of this memory? Previous research has lacked a deep exploration of LLMs' memory capabilities and the underlying theory. In this paper, we use Universal Approximation Theorem (UAT) to explain the memory mechanism in LLMs. We also conduct experiments to verify the memory capabilities of various LLMs, proposing a new method to assess their abilities based on these memory ability. We argue that LLM memory operates like Schr\"odinger's memory, meaning that it only becomes observable when a specific memory is queried. We can only determine if the model retains a memory based on its output in response to the query; otherwise, it remains indeterminate. Finally, we expand on this concept by comparing the memory capabilities of the human brain and LLMs, highlighting the similarities and differences in their operational mechanisms.