Mohamed bin Zayed University of Artificial Intelligence
Abstract:Large language models (LLMs) have grown more powerful in language generation, producing fluent text and even imitating personal style. Yet, this ability also heightens the risk of identity impersonation. To the best of our knowledge, no prior work has examined personalized machine-generated text (MGT) detection. In this paper, we introduce \dataset, the first benchmark for evaluating detector robustness in personalized settings, built from literary and blog texts paired with their LLM-generated imitations. Our experimental results demonstrate large performance gaps across detectors in personalized settings: some state-of-the-art models suffer significant drops. We attribute this limitation to the \textit{feature-inversion trap}, where features that are discriminative in general domains become inverted and misleading when applied to personalized text. Based on this finding, we propose \method, a simple and reliable way to predict detector performance changes in personalized settings. \method identifies latent directions corresponding to inverted features and constructs probe datasets that differ primarily along these features to evaluate detector dependence. Our experiments show that \method can accurately predict both the direction and the magnitude of post-transfer changes, showing 85\% correlation with the actual performance gaps. We hope that this work will encourage further research on personalized text detection.
Abstract:Scaling data and models has played a pivotal role in the remarkable progress of computer vision and language. Inspired by these domains, recent efforts in robotics have similarly focused on scaling both data and model size to develop more generalizable and robust policies. However, unlike vision and language, robotics lacks access to internet-scale demonstrations across diverse robotic tasks and environments. As a result, the scale of existing datasets typically suffers from the need for manual data collection and curation. To address this problem, here we propose BLAZER, a framework that learns manipulation policies from automatically generated training data. We build on the zero-shot capabilities of LLM planners and automatically generate demonstrations for diverse manipulation tasks in simulation. Successful examples are then used to finetune an LLM and to improve its planning capabilities without human supervision. Notably, while BLAZER training requires access to the simulator's state, we demonstrate direct transfer of acquired skills to sensor-based manipulation. Through extensive experiments, we show BLAZER to significantly improve zero-shot manipulation in both simulated and real environments. Moreover, BLAZER improves on tasks outside of its training pool and enables downscaling of LLM models. Our code and data will be made publicly available on the project page.




Abstract:The advancement of Large Language Models (LLMs) has transformed natural language processing; however, their safety mechanisms remain under-explored in low-resource, multilingual settings. Here, we aim to bridge this gap. In particular, we introduce \textsf{SGToxicGuard}, a novel dataset and evaluation framework for benchmarking LLM safety in Singapore's diverse linguistic context, including Singlish, Chinese, Malay, and Tamil. SGToxicGuard adopts a red-teaming approach to systematically probe LLM vulnerabilities in three real-world scenarios: \textit{conversation}, \textit{question-answering}, and \textit{content composition}. We conduct extensive experiments with state-of-the-art multilingual LLMs, and the results uncover critical gaps in their safety guardrails. By offering actionable insights into cultural sensitivity and toxicity mitigation, we lay the foundation for safer and more inclusive AI systems in linguistically diverse environments.\footnote{Link to the dataset: https://github.com/Social-AI-Studio/SGToxicGuard.} \textcolor{red}{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}
Abstract:Social event detection involves identifying and categorizing important events from social media, which relies on labeled data, but annotation is costly and labor-intensive. To address this problem, we propose Augmentation framework for Social Event Detection (SED-Aug), a plug-and-play dual augmentation framework, which combines explicit text-based and implicit feature-space augmentation to enhance data diversity and model robustness. The explicit augmentation utilizes large language models to enhance textual information through five diverse generation strategies. For implicit augmentation, we design five novel perturbation techniques that operate in the feature space on structural fused embeddings. These perturbations are crafted to keep the semantic and relational properties of the embeddings and make them more diverse. Specifically, SED-Aug outperforms the best baseline model by approximately 17.67% on the Twitter2012 dataset and by about 15.57% on the Twitter2018 dataset in terms of the average F1 score. The code is available at GitHub: https://github.com/congboma/SED-Aug.
Abstract:The impressive advancement of Large Language Models (LLMs) in English has not been matched across all languages. In particular, LLM performance in Arabic lags behind, due to data scarcity, linguistic diversity of Arabic and its dialects, morphological complexity, etc. Progress is further hindered by the quality of Arabic benchmarks, which typically rely on static, publicly available data, lack comprehensive task coverage, or do not provide dedicated platforms with blind test sets. This makes it challenging to measure actual progress and to mitigate data contamination. Here, we aim to bridge these gaps. In particular, we introduce BALSAM, a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation. It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation. We envision BALSAM as a unifying platform that sets standards and promotes collaborative research to advance Arabic LLM capabilities.
Abstract:We present FRaN-X, a Framing and Narratives Explorer that automatically detects entity mentions and classifies their narrative roles directly from raw text. FRaN-X comprises a two-stage system that combines sequence labeling with fine-grained role classification to reveal how entities are portrayed as protagonists, antagonists, or innocents, using a unique taxonomy of 22 fine-grained roles nested under these three main categories. The system supports five languages (Bulgarian, English, Hindi, Russian, and Portuguese) and two domains (the Russia-Ukraine Conflict and Climate Change). It provides an interactive web interface for media analysts to explore and compare framing across different sources, tackling the challenge of automatically detecting and labeling how entities are framed. Our system allows end users to focus on a single article as well as analyze up to four articles simultaneously. We provide aggregate level analysis including an intuitive graph visualization that highlights the narrative a group of articles are pushing. Our system includes a search feature for users to look up entities of interest, along with a timeline view that allows analysts to track an entity's role transitions across different contexts within the article. The FRaN-X system and the trained models are licensed under an MIT License. FRaN-X is publicly accessible at https://fran-x.streamlit.app/ and a video demonstration is available at https://youtu.be/VZVi-1B6yYk.
Abstract:In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.
Abstract:Scientific texts often convey authority due to their technical language and complex data. However, this complexity can sometimes lead to the spread of misinformation. Non-experts are particularly susceptible to misleading claims based on scientific tables due to their high information density and perceived credibility. Existing table claim verification models, including state-of-the-art large language models (LLMs), often struggle with precise fine-grained reasoning, resulting in errors and a lack of precision in verifying scientific claims. Inspired by Cognitive Load Theory, we propose that enhancing a model's ability to interpret table-based claims involves reducing cognitive load by developing modular, reusable reasoning components (i.e., atomic skills). We introduce a skill-chaining schema that dynamically composes these skills to facilitate more accurate and generalizable reasoning with a reduced cognitive load. To evaluate this, we create SciAtomicBench, a cross-domain benchmark with fine-grained reasoning annotations. With only 350 fine-tuning examples, our model trained by atomic reasoning outperforms GPT-4o's chain-of-thought method, achieving state-of-the-art results with far less training data.
Abstract:Large Language Models (LLMs) enhanced with external knowledge retrieval, an approach known as Retrieval-Augmented Generation (RAG), have shown strong performance in open-domain question answering. However, RAG systems remain susceptible to hallucinations: factually incorrect outputs that may arise either from inconsistencies in the model's internal knowledge or incorrect use of the retrieved context. Existing approaches often conflate factuality with faithfulness to the retrieved context, misclassifying factually correct statements as hallucinations if they are not directly supported by the retrieval. In this paper, we introduce FRANQ (Faithfulness-based Retrieval Augmented UNcertainty Quantification), a novel method for hallucination detection in RAG outputs. FRANQ applies different Uncertainty Quantification (UQ) techniques to estimate factuality based on whether a statement is faithful to the retrieved context or not. To evaluate FRANQ and other UQ techniques for RAG, we present a new long-form Question Answering (QA) dataset annotated for both factuality and faithfulness, combining automated labeling with manual validation of challenging examples. Extensive experiments on long- and short-form QA across multiple datasets and LLMs show that FRANQ achieves more accurate detection of factual errors in RAG-generated responses compared to existing methods.
Abstract:The rapid advancement of vision-language models (VLMs) has brought a lot of attention to their safety alignment. However, existing methods have primarily focused on model undersafety, where the model responds to hazardous queries, while neglecting oversafety, where the model refuses to answer safe queries. In this paper, we introduce the concept of $\textit{safety calibration}$, which systematically addresses both undersafety and oversafety. Specifically, we present $\textbf{VSCBench}$, a novel dataset of 3,600 image-text pairs that are visually or textually similar but differ in terms of safety, which is designed to evaluate safety calibration across image-centric and text-centric scenarios. Based on our benchmark, we evaluate safety calibration across eleven widely used VLMs. Our extensive experiments revealed major issues with both undersafety and oversafety. We further investigated four approaches to improve the model's safety calibration. We found that even though some methods effectively calibrated the models' safety problems, these methods also lead to the degradation of models' utility. This trade-off underscores the urgent need for advanced calibration methods, and our benchmark provides a valuable tool for evaluating future approaches. Our code and data are available at https://github.com/jiahuigeng/VSCBench.git.