Abstract:The widespread accessibility of large language models (LLMs) to the general public has significantly amplified the dissemination of machine-generated texts (MGTs). Advancements in prompt manipulation have exacerbated the difficulty in discerning the origin of a text (human-authored vs machinegenerated). This raises concerns regarding the potential misuse of MGTs, particularly within educational and academic domains. In this paper, we present $\textbf{LLM-DetectAIve}$ -- a system designed for fine-grained MGT detection. It is able to classify texts into four categories: human-written, machine-generated, machine-written machine-humanized, and human-written machine-polished. Contrary to previous MGT detectors that perform binary classification, introducing two additional categories in LLM-DetectiAIve offers insights into the varying degrees of LLM intervention during the text creation. This might be useful in some domains like education, where any LLM intervention is usually prohibited. Experiments show that LLM-DetectAIve can effectively identify the authorship of textual content, proving its usefulness in enhancing integrity in education, academia, and other domains. LLM-DetectAIve is publicly accessible at https://huggingface.co/spaces/raj-tomar001/MGT-New. The video describing our system is available at https://youtu.be/E8eT_bE7k8c.
Abstract:We introduce 3DEgo to address a novel problem of directly synthesizing photorealistic 3D scenes from monocular videos guided by textual prompts. Conventional methods construct a text-conditioned 3D scene through a three-stage process, involving pose estimation using Structure-from-Motion (SfM) libraries like COLMAP, initializing the 3D model with unedited images, and iteratively updating the dataset with edited images to achieve a 3D scene with text fidelity. Our framework streamlines the conventional multi-stage 3D editing process into a single-stage workflow by overcoming the reliance on COLMAP and eliminating the cost of model initialization. We apply a diffusion model to edit video frames prior to 3D scene creation by incorporating our designed noise blender module for enhancing multi-view editing consistency, a step that does not require additional training or fine-tuning of T2I diffusion models. 3DEgo utilizes 3D Gaussian Splatting to create 3D scenes from the multi-view consistent edited frames, capitalizing on the inherent temporal continuity and explicit point cloud data. 3DEgo demonstrates remarkable editing precision, speed, and adaptability across a variety of video sources, as validated by extensive evaluations on six datasets, including our own prepared GS25 dataset. Project Page: https://3dego.github.io/
Abstract:The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. Difficulties lie in assessing the factuality of free-form responses in open domains. Also, different papers use disparate evaluation benchmarks and measurements, which renders them hard to compare and hampers future progress. To mitigate these issues, we propose OpenFactCheck, a unified factuality evaluation framework for LLMs. OpenFactCheck consists of three modules: (i) CUSTCHECKER allows users to easily customize an automatic fact-checker and verify the factual correctness of documents and claims, (ii) LLMEVAL, a unified evaluation framework assesses LLM's factuality ability from various perspectives fairly, and (iii) CHECKEREVAL is an extensible solution for gauging the reliability of automatic fact-checkers' verification results using human-annotated datasets. OpenFactCheck is publicly released at https://github.com/yuxiaw/OpenFactCheck.
Abstract:Text-to-Image (T2I) diffusion models have gained popularity recently due to their multipurpose and easy-to-use nature, e.g. image and video generation as well as editing. However, training a diffusion model specifically for 3D scene editing is not straightforward due to the lack of large-scale datasets. To date, editing 3D scenes requires either re-training the model to adapt to various 3D edited scenes or design-specific methods for each special editing type. Furthermore, state-of-the-art (SOTA) methods require multiple synchronized edited images from the same scene to facilitate the scene editing. Due to the current limitations of T2I models, it is very challenging to apply consistent editing effects to multiple images, i.e. multi-view inconsistency in editing. This in turn compromises the desired 3D scene editing performance if these images are used. In our work, we propose a novel training-free 3D scene editing technique, Free-Editor, which allows users to edit 3D scenes without further re-training the model during test time. Our proposed method successfully avoids the multi-view style inconsistency issue in SOTA methods with the help of a "single-view editing" scheme. Specifically, we show that editing a particular 3D scene can be performed by only modifying a single view. To this end, we introduce an Edit Transformer that enforces intra-view consistency and inter-view style transfer by utilizing self- and cross-attention, respectively. Since it is no longer required to re-train the model and edit every view in a scene, the editing time, as well as memory resources, are reduced significantly, e.g., the runtime being $\sim \textbf{20} \times$ faster than SOTA. We have conducted extensive experiments on a wide range of benchmark datasets and achieve diverse editing capabilities with our proposed technique.
Abstract:While neural fields have made significant strides in view synthesis and scene reconstruction, editing them poses a formidable challenge due to their implicit encoding of geometry and texture information from multi-view inputs. In this paper, we introduce \textsc{LatentEditor}, an innovative framework designed to empower users with the ability to perform precise and locally controlled editing of neural fields using text prompts. Leveraging denoising diffusion models, we successfully embed real-world scenes into the latent space, resulting in a faster and more adaptable NeRF backbone for editing compared to traditional methods. To enhance editing precision, we introduce a delta score to calculate the 2D mask in the latent space that serves as a guide for local modifications while preserving irrelevant regions. Our novel pixel-level scoring approach harnesses the power of InstructPix2Pix (IP2P) to discern the disparity between IP2P conditional and unconditional noise predictions in the latent space. The edited latents conditioned on the 2D masks are then iteratively updated in the training set to achieve 3D local editing. Our approach achieves faster editing speeds and superior output quality compared to existing 3D editing models, bridging the gap between textual instructions and high-quality 3D scene editing in latent space. We show the superiority of our approach on four benchmark 3D datasets, LLFF, IN2N, NeRFStudio and NeRF-Art.
Abstract:Human-robot interaction (HRI) is a rapidly growing field that encompasses social and industrial applications. Machine learning plays a vital role in industrial HRI by enhancing the adaptability and autonomy of robots in complex environments. However, data privacy is a crucial concern in the interaction between humans and robots, as companies need to protect sensitive data while machine learning algorithms require access to large datasets. Federated Learning (FL) offers a solution by enabling the distributed training of models without sharing raw data. Despite extensive research on Federated learning (FL) for tasks such as natural language processing (NLP) and image classification, the question of how to use FL for HRI remains an open research problem. The traditional FL approach involves transmitting large neural network parameter matrices between the server and clients, which can lead to high communication costs and often becomes a bottleneck in FL. This paper proposes a communication-efficient FL framework for human-robot interaction (CEFHRI) to address the challenges of data heterogeneity and communication costs. The framework leverages pre-trained models and introduces a trainable spatiotemporal adapter for video understanding tasks in HRI. Experimental results on three human-robot interaction benchmark datasets: HRI30, InHARD, and COIN demonstrate the superiority of CEFHRI over full fine-tuning in terms of communication costs. The proposed methodology provides a secure and efficient approach to HRI federated learning, particularly in industrial environments with data privacy concerns and limited communication bandwidth. Our code is available at https://github.com/umarkhalidAI/CEFHRI-Efficient-Federated-Learning.
Abstract:It can be challenging to identify brain MRI anomalies using supervised deep-learning techniques due to anatomical heterogeneity and the requirement for pixel-level labeling. Unsupervised anomaly detection approaches provide an alternative solution by relying only on sample-level labels of healthy brains to generate a desired representation to identify abnormalities at the pixel level. Although, generative models are crucial for generating such anatomically consistent representations of healthy brains, accurately generating the intricate anatomy of the human brain remains a challenge. In this study, we present a method called masked-DDPM (mDPPM), which introduces masking-based regularization to reframe the generation task of diffusion models. Specifically, we introduce Masked Image Modeling (MIM) and Masked Frequency Modeling (MFM) in our self-supervised approach that enables models to learn visual representations from unlabeled data. To the best of our knowledge, this is the first attempt to apply MFM in DPPM models for medical applications. We evaluate our approach on datasets containing tumors and numerous sclerosis lesions and exhibit the superior performance of our unsupervised method as compared to the existing fully/weakly supervised baselines. Code is available at https://github.com/hasan1292/mDDPM.