Abstract:Prior studies have shown that distinguishing text generated by large language models (LLMs) from human-written one is highly challenging, and often no better than random guessing. To verify the generalizability of this finding across languages and domains, we perform an extensive case study to identify the upper bound of human detection accuracy. Across 16 datasets covering 9 languages and 9 domains, 19 annotators achieved an average detection accuracy of 87.6%, thus challenging previous conclusions. We find that major gaps between human and machine text lie in concreteness, cultural nuances, and diversity. Prompting by explicitly explaining the distinctions in the prompts can partially bridge the gaps in over 50% of the cases. However, we also find that humans do not always prefer human-written text, particularly when they cannot clearly identify its source.
Abstract:We present the GenAI Content Detection Task~1 -- a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 26 teams -- to the Multilingual. We provide a comprehensive overview of the data, a summary of the results -- including system rankings and performance scores -- detailed descriptions of the participating systems, and an in-depth analysis of submissions. https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1
Abstract:Large vision-language models (LVLMs) have made significant progress in recent years. While LVLMs exhibit excellent ability in language understanding, question answering, and conversations of visual inputs, they are prone to producing hallucinations. While several methods are proposed to evaluate the hallucinations in LVLMs, most are reference-based and depend on external tools, which complicates their practical application. To assess the viability of alternative methods, it is critical to understand whether the reference-free approaches, which do not rely on any external tools, can efficiently detect hallucinations. Therefore, we initiate an exploratory study to demonstrate the effectiveness of different reference-free solutions in detecting hallucinations in LVLMs. In particular, we conduct an extensive study on three kinds of techniques: uncertainty-based, consistency-based, and supervised uncertainty quantification methods on four representative LVLMs across two different tasks. The empirical results show that the reference-free approaches are capable of effectively detecting non-factual responses in LVLMs, with the supervised uncertainty quantification method outperforming the others, achieving the best performance across different settings.
Abstract:The widespread accessibility of large language models (LLMs) to the general public has significantly amplified the dissemination of machine-generated texts (MGTs). Advancements in prompt manipulation have exacerbated the difficulty in discerning the origin of a text (human-authored vs machinegenerated). This raises concerns regarding the potential misuse of MGTs, particularly within educational and academic domains. In this paper, we present $\textbf{LLM-DetectAIve}$ -- a system designed for fine-grained MGT detection. It is able to classify texts into four categories: human-written, machine-generated, machine-written machine-humanized, and human-written machine-polished. Contrary to previous MGT detectors that perform binary classification, introducing two additional categories in LLM-DetectiAIve offers insights into the varying degrees of LLM intervention during the text creation. This might be useful in some domains like education, where any LLM intervention is usually prohibited. Experiments show that LLM-DetectAIve can effectively identify the authorship of textual content, proving its usefulness in enhancing integrity in education, academia, and other domains. LLM-DetectAIve is publicly accessible at https://huggingface.co/spaces/raj-tomar001/MGT-New. The video describing our system is available at https://youtu.be/E8eT_bE7k8c.
Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. Difficulties lie in assessing the factuality of free-form responses in open domains. Also, different papers use disparate evaluation benchmarks and measurements, which renders them hard to compare and hampers future progress. To mitigate these issues, we propose OpenFactCheck, a unified factuality evaluation framework for LLMs. OpenFactCheck consists of three modules: (i) CUSTCHECKER allows users to easily customize an automatic fact-checker and verify the factual correctness of documents and claims, (ii) LLMEVAL, a unified evaluation framework assesses LLM's factuality ability from various perspectives fairly, and (iii) CHECKEREVAL is an extensible solution for gauging the reliability of automatic fact-checkers' verification results using human-annotated datasets. OpenFactCheck is publicly released at https://github.com/yuxiaw/OpenFactCheck.
Abstract:Multimodal large language models (MLLMs) carry the potential to support humans in processing vast amounts of information. While MLLMs are already being used as a fact-checking tool, their abilities and limitations in this regard are understudied. Here is aim to bridge this gap. In particular, we propose a framework for systematically assessing the capacity of current multimodal models to facilitate real-world fact-checking. Our methodology is evidence-free, leveraging only these models' intrinsic knowledge and reasoning capabilities. By designing prompts that extract models' predictions, explanations, and confidence levels, we delve into research questions concerning model accuracy, robustness, and reasons for failure. We empirically find that (1) GPT-4V exhibits superior performance in identifying malicious and misleading multimodal claims, with the ability to explain the unreasonable aspects and underlying motives, and (2) existing open-source models exhibit strong biases and are highly sensitive to the prompt. Our study offers insights into combating false multimodal information and building secure, trustworthy multimodal models. To the best of our knowledge, we are the first to evaluate MLLMs for real-world fact-checking.
Abstract:The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. In this work, we present a holistic end-to-end solution for annotating the factuality of LLM-generated responses, which encompasses a multi-stage annotation scheme designed to yield detailed labels concerning the verifiability and factual inconsistencies found in LLM outputs. We design and build an annotation tool to speed up the labelling procedure and ease the workload of raters. It allows flexible incorporation of automatic results in any stage, e.g. automatically-retrieved evidence. We further construct an open-domain document-level factuality benchmark in three-level granularity: claim, sentence and document. Preliminary experiments show that FacTool, FactScore and Perplexity.ai are struggling to identify false claims with the best F1=0.53. Annotation tool, benchmark and code are available at https://github.com/yuxiaw/Factcheck-GPT.
Abstract:Language models (LMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, the reliability of their output is concerning and questionable regarding the demand for AI safety. Assessing the confidence of LM predictions and calibrating them across different tasks with the aim to align LM confidence with accuracy can help mitigate risks and enable LMs to make better decisions. There have been various works in this respect, but there has been no comprehensive overview of this important research area. The present survey aims to bridge this gap. In particular, we discuss methods and techniques for LM confidence estimation and calibration, encompassing different LMs and various tasks. We further outline the challenges of estimating the confidence for large language models and we suggest some promising directions for future work.
Abstract:The aim of dataset distillation is to encode the rich features of an original dataset into a tiny dataset. It is a promising approach to accelerate neural network training and related studies. Different approaches have been proposed to improve the informativeness and generalization performance of distilled images. However, no work has comprehensively analyzed this technique from a security perspective and there is a lack of systematic understanding of potential risks. In this work, we conduct extensive experiments to evaluate current state-of-the-art dataset distillation methods. We successfully use membership inference attacks to show that privacy risks still remain. Our work also demonstrates that dataset distillation can cause varying degrees of impact on model robustness and amplify model unfairness across classes when making predictions. This work offers a large-scale benchmarking framework for dataset distillation evaluation.