Abstract:Following last year, we have continued to host the WMT translation shared task this year, the second edition of the Discourse-Level Literary Translation. We focus on three language directions: Chinese-English, Chinese-German, and Chinese-Russian, with the latter two ones newly added. This year, we totally received 10 submissions from 5 academia and industry teams. We employ both automatic and human evaluations to measure the performance of the submitted systems. The official ranking of the systems is based on the overall human judgments. We release data, system outputs, and leaderboard at https://www2.statmt.org/wmt24/literary-translation-task.html.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities in natural language processing but exhibit significant performance gaps among different languages. Most existing approaches to address these disparities rely on pretraining or fine-tuning, which are resource-intensive. To overcome these limitations without incurring significant costs, we propose Inference-Time Cross-Lingual Intervention (INCLINE), a novel framework that enhances LLM performance on low-performing (source) languages by aligning their internal representations with those of high-performing (target) languages during inference. INCLINE initially learns alignment matrices using parallel sentences from source and target languages through a Least-Squares optimization, and then applies these matrices during inference to transform the low-performing language representations toward the high-performing language space. Extensive experiments on nine benchmarks with five LLMs demonstrate that INCLINE significantly improves performance across diverse tasks and languages, compared to recent strong baselines. Our analysis demonstrates that INCLINE is highly cost-effective and applicable to a wide range of applications. In addition, we release the code to foster research along this line: https://github.com/weixuan-wang123/INCLINE.
Abstract:The performance of large language models (LLMs) in natural language processing (NLP) tasks is significantly influenced by the quality and diversity of data used for supervised fine-tuning (SFT). Current data selection methods often focus solely on quality or diversity, leading to underperforming models due to suboptimal training data. In this paper, we introduce GraphFilter, a novel method that represents the dataset as a bipartite graph, linking sentences to their constituent n-grams. This representation effectively captures the relationships between sentences and linguistic patterns, facilitating the selection of sentences that enhance n-gram diversity. To balance quality and diversity during selection, we propose a priority function that combines the quality metric with the diversity metric in a multiplicative manner. GraphFilter iteratively selects high-priority sentences, updates the bipartite graph by removing covered n-grams, and re-calculates priorities to reflect the evolving data landscape. We conduct extensive experiments using three model backbones across six widely used benchmarks. The results demonstrate that GraphFilter outperforms all nine baseline approaches, achieving superior model performance and computational efficiency. Our analyses validate the effectiveness of our design choices, examine the subsets selected by GraphFilter and other methods, highlight the importance of instruction diversity, and explore the role of quality and diversity in relation to subset sizes. GraphFilter establishes a new foundation for effective data selection strategies, encouraging further research in data selection for LLMs.
Abstract:Reinforcement learning (RL) is a powerful approach to enhance task-oriented dialogue (TOD) systems. However, existing RL methods tend to mainly focus on generation tasks, such as dialogue policy learning (DPL) or response generation (RG), while neglecting dialogue state tracking (DST) for understanding. This narrow focus limits the systems to achieve globally optimal performance by overlooking the interdependence between understanding and generation. Additionally, RL methods face challenges with sparse and delayed rewards, which complicates training and optimization. To address these issues, we extend RL into both understanding and generation tasks by introducing step-by-step rewards throughout the token generation. The understanding reward increases as more slots are correctly filled in DST, while the generation reward grows with the accurate inclusion of user requests. Our approach provides a balanced optimization aligned with task completion. Experimental results demonstrate that our approach effectively enhances the performance of TOD systems and achieves new state-of-the-art results on three widely used datasets, including MultiWOZ2.0, MultiWOZ2.1, and In-Car. Our approach also shows superior few-shot ability in low-resource settings compared to current models.
Abstract:Large language models (LLMs) are typically fine-tuned on diverse and extensive datasets sourced from various origins to develop a comprehensive range of skills, such as writing, reasoning, chatting, coding, and more. Each skill has unique characteristics, and these datasets are often heterogeneous and imbalanced, making the fine-tuning process highly challenging. Balancing the development of each skill while ensuring the model maintains its overall performance requires sophisticated techniques and careful dataset curation. In this work, we propose a general, model-agnostic, reinforcement learning framework, Mixture-of-Skills (MoS), that learns to optimize data usage automatically during the fine-tuning process. This framework ensures the optimal comprehensive skill development of LLMs by dynamically adjusting the focus on different datasets based on their current learning state. To validate the effectiveness of MoS, we conduct extensive experiments using three diverse LLM backbones on two widely used benchmarks and demonstrate that MoS substantially enhances model performance. Building on the success of MoS, we propose MoSpec, an adaptation for task-specific fine-tuning, which harnesses the utilities of various datasets for a specific purpose. Our work underlines the significance of dataset rebalancing and present MoS as a powerful, general solution for optimizing data usage in the fine-tuning of LLMs for various purposes.
Abstract:Recent advancements in machine translation (MT) have significantly enhanced translation quality across various domains. However, the translation of literary texts remains a formidable challenge due to their complex language, figurative expressions, and cultural nuances. In this work, we introduce a novel multi-agent framework based on large language models (LLMs) for literary translation, implemented as a company called TransAgents, which mirrors traditional translation publication process by leveraging the collective capabilities of multiple agents, to address the intricate demands of translating literary works. To evaluate the effectiveness of our system, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP) and Bilingual LLM Preference (BLP). MHP assesses translations from the perspective of monolingual readers of the target language, while BLP uses advanced LLMs to compare translations directly with the original texts. Empirical findings indicate that despite lower d-BLEU scores, translations from TransAgents are preferred by both human evaluators and LLMs over human-written references, particularly in genres requiring domain-specific knowledge. We also highlight the strengths and limitations of TransAgents through case studies and suggests directions for future research.
Abstract:Content-based recommendation systems play a crucial role in delivering personalized content to users in the digital world. In this work, we introduce EmbSum, a novel framework that enables offline pre-computations of users and candidate items while capturing the interactions within the user engagement history. By utilizing the pretrained encoder-decoder model and poly-attention layers, EmbSum derives User Poly-Embedding (UPE) and Content Poly-Embedding (CPE) to calculate relevance scores between users and candidate items. EmbSum actively learns the long user engagement histories by generating user-interest summary with supervision from large language model (LLM). The effectiveness of EmbSum is validated on two datasets from different domains, surpassing state-of-the-art (SoTA) methods with higher accuracy and fewer parameters. Additionally, the model's ability to generate summaries of user interests serves as a valuable by-product, enhancing its usefulness for personalized content recommendations.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.
Abstract:Document-level neural machine translation (DocNMT) aims to generate translations that are both coherent and cohesive, in contrast to its sentence-level counterpart. However, due to its longer input length and limited availability of training data, DocNMT often faces the challenge of data sparsity. To overcome this issue, we propose a novel Importance-Aware Data Augmentation (IADA) algorithm for DocNMT that augments the training data based on token importance information estimated by the norm of hidden states and training gradients. We conduct comprehensive experiments on three widely-used DocNMT benchmarks. Our empirical results show that our proposed IADA outperforms strong DocNMT baselines as well as several data augmentation approaches, with statistical significance on both sentence-level and document-level BLEU.
Abstract:Large language models (LLMs) have made significant strides in various natural language processing (NLP) tasks. Recent research shows that the moderately-sized LLMs often outperform their larger counterparts after task-specific fine-tuning. In this work, we delve into the process of adapting LLMs to specialize in document-level machine translation (DocMT) for a specific language pair. Firstly, we explore how prompt strategies affect downstream translation performance. Then, we conduct extensive experiments with two fine-tuning methods, three LLM backbones, and 18 translation tasks across nine language pairs. Our findings indicate that in some cases, these specialized models even surpass GPT-4 in translation performance, while they still significantly suffer from the off-target translation issue in others, even if they are exclusively fine-tuned on bilingual parallel documents. Furthermore, we provide an in-depth analysis of these LLMs tailored for DocMT, exploring aspects such as translation errors, the scaling law of parallel documents, out-of-domain generalization, and the impact of zero-shot crosslingual transfer. The findings of this research not only shed light on the strengths and limitations of LLM-based DocMT models but also provide a foundation for future research in DocMT.