Abstract:Deep reinforcement learning (RL) has achieved significant success, yet its application in real-world scenarios is often hindered by a lack of robustness to environmental uncertainties. To solve this challenge, some robust RL algorithms have been proposed, but most are limited to tabular settings. In this work, we propose Distributionally Robust Soft Actor-Critic (DR-SAC), a novel algorithm designed to enhance the robustness of the state-of-the-art Soft Actor-Critic (SAC) algorithm. DR-SAC aims to maximize the expected value with entropy against the worst possible transition model lying in an uncertainty set. A distributionally robust version of the soft policy iteration is derived with a convergence guarantee. For settings where nominal distributions are unknown, such as offline RL, a generative modeling approach is proposed to estimate the required nominal distributions from data. Furthermore, experimental results on a range of continuous control benchmark tasks demonstrate our algorithm achieves up to $9.8$ times the average reward of the SAC baseline under common perturbations. Additionally, compared with existing robust reinforcement learning algorithms, DR-SAC significantly improves computing efficiency and applicability to large-scale problems.
Abstract:Machine translation (MT) has become indispensable for cross-border communication in globalized industries like e-commerce, finance, and legal services, with recent advancements in large language models (LLMs) significantly enhancing translation quality. However, applying general-purpose MT models to industrial scenarios reveals critical limitations due to domain-specific terminology, cultural nuances, and stylistic conventions absent in generic benchmarks. Existing evaluation frameworks inadequately assess performance in specialized contexts, creating a gap between academic benchmarks and real-world efficacy. To address this, we propose a three-level translation capability framework: (1) Basic Linguistic Competence, (2) Domain-Specific Proficiency, and (3) Cultural Adaptation, emphasizing the need for holistic evaluation across these dimensions. We introduce TransBench, a benchmark tailored for industrial MT, initially targeting international e-commerce with 17,000 professionally translated sentences spanning 4 main scenarios and 33 language pairs. TransBench integrates traditional metrics (BLEU, TER) with Marco-MOS, a domain-specific evaluation model, and provides guidelines for reproducible benchmark construction. Our contributions include: (1) a structured framework for industrial MT evaluation, (2) the first publicly available benchmark for e-commerce translation, (3) novel metrics probing multi-level translation quality, and (4) open-sourced evaluation tools. This work bridges the evaluation gap, enabling researchers and practitioners to systematically assess and enhance MT systems for industry-specific needs.
Abstract:We study the fundamental problem of offline assortment optimization under the Multinomial Logit (MNL) model, where sellers must determine the optimal subset of the products to offer based solely on historical customer choice data. While most existing approaches to learning-based assortment optimization focus on the online learning of the optimal assortment through repeated interactions with customers, such exploration can be costly or even impractical in many real-world settings. In this paper, we consider the offline learning paradigm and investigate the minimal data requirements for efficient offline assortment optimization. To this end, we introduce Pessimistic Rank-Breaking (PRB), an algorithm that combines rank-breaking with pessimistic estimation. We prove that PRB is nearly minimax optimal by establishing the tight suboptimality upper bound and a nearly matching lower bound. This further shows that "optimal item coverage" - where each item in the optimal assortment appears sufficiently often in the historical data - is both sufficient and necessary for efficient offline learning. This significantly relaxes the previous requirement of observing the complete optimal assortment in the data. Our results provide fundamental insights into the data requirements for offline assortment optimization under the MNL model.
Abstract:In this paper, we study the behavior of the Upper Confidence Bound-Variance (UCB-V) algorithm for Multi-Armed Bandit (MAB) problems, a variant of the canonical Upper Confidence Bound (UCB) algorithm that incorporates variance estimates into its decision-making process. More precisely, we provide an asymptotic characterization of the arm-pulling rates of UCB-V, extending recent results for the canonical UCB in Kalvit and Zeevi (2021) and Khamaru and Zhang (2024). In an interesting contrast to the canonical UCB, we show that the behavior of UCB-V can exhibit instability, meaning that the arm-pulling rates may not always be asymptotically deterministic. Besides the asymptotic characterization, we also provide non-asymptotic bounds for arm-pulling rates in the high probability regime, offering insights into regret analysis. As an application of this high probability result, we show that UCB-V can achieve a refined regret bound, previously unknown even for more complicate and advanced variance-aware online decision-making algorithms.
Abstract:We present PRTGaussian, a realtime relightable novel-view synthesis method made possible by combining 3D Gaussians and Precomputed Radiance Transfer (PRT). By fitting relightable Gaussians to multi-view OLAT data, our method enables real-time, free-viewpoint relighting. By estimating the radiance transfer based on high-order spherical harmonics, we achieve a balance between capturing detailed relighting effects and maintaining computational efficiency. We utilize a two-stage process: in the first stage, we reconstruct a coarse geometry of the object from multi-view images. In the second stage, we initialize 3D Gaussians with the obtained point cloud, then simultaneously refine the coarse geometry and learn the light transport for each Gaussian. Extensive experiments on synthetic datasets show that our approach can achieve fast and high-quality relighting for general objects. Code and data are available at https://github.com/zhanglbthu/PRTGaussian.
Abstract:Efficiently learning equilibria with large state and action spaces in general-sum Markov games while overcoming the curse of multi-agency is a challenging problem. Recent works have attempted to solve this problem by employing independent linear function classes to approximate the marginal $Q$-value for each agent. However, existing sample complexity bounds under such a framework have a suboptimal dependency on the desired accuracy $\varepsilon$ or the action space. In this work, we introduce a new algorithm, Lin-Confident-FTRL, for learning coarse correlated equilibria (CCE) with local access to the simulator, i.e., one can interact with the underlying environment on the visited states. Up to a logarithmic dependence on the size of the state space, Lin-Confident-FTRL learns $\epsilon$-CCE with a provable optimal accuracy bound $O(\epsilon^{-2})$ and gets rids of the linear dependency on the action space, while scaling polynomially with relevant problem parameters (such as the number of agents and time horizon). Moreover, our analysis of Linear-Confident-FTRL generalizes the virtual policy iteration technique in the single-agent local planning literature, which yields a new computationally efficient algorithm with a tighter sample complexity bound when assuming random access to the simulator.
Abstract:Large-scale 3D scene reconstruction and novel view synthesis are vital for autonomous vehicles, especially utilizing temporally sparse LiDAR frames. However, conventional explicit representations remain a significant bottleneck towards representing the reconstructed and synthetic scenes at unlimited resolution. Although the recently developed neural radiance fields (NeRF) have shown compelling results in implicit representations, the problem of large-scale 3D scene reconstruction and novel view synthesis using sparse LiDAR frames remains unexplored. To bridge this gap, we propose a 3D scene reconstruction and novel view synthesis framework called parent-child neural radiance field (PC-NeRF). Based on its two modules, parent NeRF and child NeRF, the framework implements hierarchical spatial partitioning and multi-level scene representation, including scene, segment, and point levels. The multi-level scene representation enhances the efficient utilization of sparse LiDAR point cloud data and enables the rapid acquisition of an approximate volumetric scene representation. With extensive experiments, PC-NeRF is proven to achieve high-precision novel LiDAR view synthesis and 3D reconstruction in large-scale scenes. Moreover, PC-NeRF can effectively handle situations with sparse LiDAR frames and demonstrate high deployment efficiency with limited training epochs. Our approach implementation and the pre-trained models are available at https://github.com/biter0088/pc-nerf.
Abstract:Facial geometry and appearance capture have demonstrated tremendous success in 3D scanning real humans in studios. Recent works propose to democratize this technique while keeping the results high quality. However, they are still inconvenient for daily usage. In addition, they focus on an easier problem of only capturing facial skin. This paper proposes a novel method for high-quality face capture, featuring an easy-to-use system and the capability to model the complete face with skin, mouth interior, hair, and eyes. We reconstruct facial geometry and appearance from a single co-located smartphone flashlight sequence captured in a dim room where the flashlight is the dominant light source (e.g. rooms with curtains or at night). To model the complete face, we propose a novel hybrid representation to effectively model both eyes and other facial regions, along with novel techniques to learn it from images. We apply a combined lighting model to compactly represent real illuminations and exploit a morphable face albedo model as a reflectance prior to disentangle diffuse and specular. Experiments show that our method can capture high-quality 3D relightable scans.
Abstract:Reconstructing large-scale 3D scenes is essential for autonomous vehicles, especially when partial sensor data is lost. Although the recently developed neural radiance fields (NeRF) have shown compelling results in implicit representations, the large-scale 3D scene reconstruction using partially lost LiDAR point cloud data still needs to be explored. To bridge this gap, we propose a novel 3D scene reconstruction framework called parent-child neural radiance field (PC-NeRF). The framework comprises two modules, the parent NeRF and the child NeRF, to simultaneously optimize scene-level, segment-level, and point-level scene representations. Sensor data can be utilized more efficiently by leveraging the segment-level representation capabilities of child NeRFs, and an approximate volumetric representation of the scene can be quickly obtained even with limited observations. With extensive experiments, our proposed PC-NeRF is proven to achieve high-precision 3D reconstruction in large-scale scenes. Moreover, PC-NeRF can effectively tackle situations where partial sensor data is lost and has high deployment efficiency with limited training time. Our approach implementation and the pre-trained models will be available at https://github.com/biter0088/pc-nerf.
Abstract:Modeling non-Lambertian effects such as facial specularity leads to a more realistic 3D Morphable Face Model. Existing works build parametric models for diffuse and specular albedo using Light Stage data. However, only diffuse and specular albedo cannot determine the full BRDF. In addition, the requirement of Light Stage data is hard to fulfill for the research communities. This paper proposes the first 3D morphable face reflectance model with spatially varying BRDF using only low-cost publicly-available data. We apply linear shiness weighting into parametric modeling to represent spatially varying specular intensity and shiness. Then an inverse rendering algorithm is developed to reconstruct the reflectance parameters from non-Light Stage data, which are used to train an initial morphable reflectance model. To enhance the model's generalization capability and expressive power, we further propose an update-by-reconstruction strategy to finetune it on an in-the-wild dataset. Experimental results show that our method obtains decent rendering results with plausible facial specularities. Our code is released \href{https://yxuhan.github.io/ReflectanceMM/index.html}{\textcolor{magenta}{here}}.