Abstract:High-quality eyelid reconstruction and animation are challenging for the subtle details and complicated deformations. Previous works usually suffer from the trade-off between the capture costs and the quality of details. In this paper, we propose a novel method that can achieve detailed eyelid reconstruction and animation by only using an RGB video captured by a mobile phone. Our method utilizes both static and dynamic information of eyeballs (e.g., positions and rotations) to assist the eyelid reconstruction, cooperating with an automatic eyeball calibration method to get the required eyeball parameters. Furthermore, we develop a neural eyelid control module to achieve the semantic animation control of eyelids. To the best of our knowledge, we present the first method for high-quality eyelid reconstruction and animation from lightweight captures. Extensive experiments on both synthetic and real data show that our method can provide more detailed and realistic results compared with previous methods based on the same-level capture setups. The code is available at https://github.com/StoryMY/AniEyelid.
Abstract:Facial geometry and appearance capture have demonstrated tremendous success in 3D scanning real humans in studios. Recent works propose to democratize this technique while keeping the results high quality. However, they are still inconvenient for daily usage. In addition, they focus on an easier problem of only capturing facial skin. This paper proposes a novel method for high-quality face capture, featuring an easy-to-use system and the capability to model the complete face with skin, mouth interior, hair, and eyes. We reconstruct facial geometry and appearance from a single co-located smartphone flashlight sequence captured in a dim room where the flashlight is the dominant light source (e.g. rooms with curtains or at night). To model the complete face, we propose a novel hybrid representation to effectively model both eyes and other facial regions, along with novel techniques to learn it from images. We apply a combined lighting model to compactly represent real illuminations and exploit a morphable face albedo model as a reflectance prior to disentangle diffuse and specular. Experiments show that our method can capture high-quality 3D relightable scans.
Abstract:In portraits, eyeglasses may occlude facial regions and generate cast shadows on faces, which degrades the performance of many techniques like face verification and expression recognition. Portrait eyeglasses removal is critical in handling these problems. However, completely removing the eyeglasses is challenging because the lighting effects (e.g., cast shadows) caused by them are often complex. In this paper, we propose a novel framework to remove eyeglasses as well as their cast shadows from face images. The method works in a detect-then-remove manner, in which eyeglasses and cast shadows are both detected and then removed from images. Due to the lack of paired data for supervised training, we present a new synthetic portrait dataset with both intermediate and final supervisions for both the detection and removal tasks. Furthermore, we apply a cross-domain technique to fill the gap between the synthetic and real data. To the best of our knowledge, the proposed technique is the first to remove eyeglasses and their cast shadows simultaneously. The code and synthetic dataset are available at https://github.com/StoryMY/take-off-eyeglasses.