Abstract:Backdoor attacks present a significant threat to the robustness of Federated Learning (FL) due to their stealth and effectiveness. They maintain both the main task of the FL system and the backdoor task simultaneously, causing malicious models to appear statistically similar to benign ones, which enables them to evade detection by existing defense methods. We find that malicious parameters in backdoored models are inactive on the main task, resulting in a significantly large empirical loss during the machine unlearning process on clean inputs. Inspired by this, we propose MASA, a method that utilizes individual unlearning on local models to identify malicious models in FL. To improve the performance of MASA in challenging non-independent and identically distributed (non-IID) settings, we design pre-unlearning model fusion that integrates local models with knowledge learned from other datasets to mitigate the divergence in their unlearning behaviors caused by the non-IID data distributions of clients. Additionally, we propose a new anomaly detection metric with minimal hyperparameters to filter out malicious models efficiently. Extensive experiments on IID and non-IID datasets across six different attacks validate the effectiveness of MASA. To the best of our knowledge, this is the first work to leverage machine unlearning to identify malicious models in FL. Code is available at \url{https://github.com/JiiahaoXU/MASA}.
Abstract:Foundation models (FMs) have shown remarkable advancements in enhancing the performance of intelligent applications. To address the need for data privacy in FM fine-tuning, federated learning has emerged as the de facto framework. Specifically, Federated FMs (FedFMs) fine-tuning using low-rank adaptation (LoRA) modules instead of the full model over multiple clients can achieve both parameter efficiency and data privacy. However, recent studies rarely address the challenges posed by clients with heterogeneous resources, particularly in GPU memory capacity. In this paper, we introduce Fed-piLot, an efficient FedFM fine-tuning framework with optimized local LoRA assignments for heterogeneous clients. By emphasizing the different memory consumption for training different LoRA layers, as well as the varying contributions of different layers to model performance, we formulate the LoRA assignment as a Knapsack Optimization Problem. We design a Local-Global Information Gain Score (IG-Score) based value function to optimize LoRA assignment under clients' memory constraints. To further mitigate the impact of heterogeneity in model updates, we propose a novel Spatial-Temporal model aggregation (STAgg) rule using the Dynamic Weight Adjustment (DWA) strategy. Experimental results on three datasets under both IID and non-IID conditions demonstrate the effectiveness and efficiency of Fed-piLot. The code will be publicly available.
Abstract:Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their local data. Yet the FL system is vulnerable to well-designed Byzantine attacks, which aim to disrupt the model training process by uploading malicious model updates. Existing robust aggregation rule-based defense methods overlook the diversity of magnitude and direction across different layers of the model updates, resulting in limited robustness performance, particularly in non-IID settings. To address these challenges, we propose the Layer-Adaptive Sparsified Model Aggregation (LASA) approach, which combines pre-aggregation sparsification with layer-wise adaptive aggregation to improve robustness. Specifically, LASA includes a pre-aggregation sparsification module that sparsifies updates from each client before aggregation, reducing the impact of malicious parameters and minimizing the interference from less important parameters for the subsequent filtering process. Based on sparsified updates, a layer-wise adaptive filter then adaptively selects benign layers using both magnitude and direction metrics across all clients for aggregation. We provide the detailed theoretical robustness analysis of LASA and the resilience analysis for the FL integrated with LASA. Extensive experiments are conducted on various IID and non-IID datasets. The numerical results demonstrate the effectiveness of LASA. Code is available at \url{https://github.com/JiiahaoXU/LASA}.
Abstract:This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs) by identifying and tackling a refusal position bias within safety tuning data, which compromises the models' ability to appropriately refuse generating unsafe content. We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position, significantly enhancing their safety capabilities. DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation (MLE) with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence. Our empirical evaluation, conducted using LLaMA3 and Mistral model families across six attack scenarios, demonstrates that our method not only improves model safety without compromising performance but also surpasses well-known models such as GPT-4 in defending against attacks. Importantly, our approach successfully defends recent advanced attack methods (e.g., CodeAttack) that have jailbroken GPT-4 and LLaMA3-70B-Instruct. Our code and data can be found at https://github.com/RobustNLP/DeRTa.
Abstract:Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory lung condition that causes airflow obstruction. The existing methods can only detect patients who already have COPD based on obvious features shown in the spirogram (In this article, the spirogram specifically involves measuring Volume-Flow curve time series). Early prediction of COPD risk is vital for monitoring COPD disease progression, slowing it down, or even preventing its onset. However, these methods fail to early predict an individual's probability of COPD in the future based on subtle features in the spirogram. To address this gap, for the first time, we propose DeepSpiro, a method based on deep learning for early prediction of future COPD risk. DeepSpiro consists of four parts. First, we construct Volume-Flow curves guided by Time-Volume instability smoothing (SpiroSmoother) to enhance the stability of the original Volume-Flow curves precisely. Second, we extract critical features from the evolution of varied-length key patches (SpiroEncoder) to capture the key temporal evolution from original high-dimensional dynamic sequences to a unified low-dimensional temporal representation. Third, we explain the model based on temporal attention and heterogeneous feature fusion (SpiroExplainer), which integrates information from heterogeneous data such as spirogram and demographic information. Fourth, we predict the risk of COPD based on the evolution of key patch concavity (SpiroPredictor), enabling accurate prediction of the risk of disease in high-risk patients who are not yet diagnosed, for up to 1, 2, 3, 4, 5 years, and beyond. We conduct experiments on the UK Biobank dataset. Results show that DeepSpiro achieves an AUC value of 0.8328 in the task of detecting COPD. In early prediction tasks, high-risk and low-risk groups show significant differences in the future, with a p-value of <0.001.
Abstract:Under circumstances of heterophily, where nodes with different labels tend to be connected based on semantic meanings, Graph Neural Networks (GNNs) often exhibit suboptimal performance. Current studies on graph heterophily mainly focus on aggregation calibration or neighbor extension and address the heterophily issue by utilizing node features or structural information to improve GNN representations. In this paper, we propose and demonstrate that the valuable semantic information inherent in heterophily can be utilized effectively in graph learning by investigating the distribution of neighbors for each individual node within the graph. The theoretical analysis is carried out to demonstrate the efficacy of the idea in enhancing graph learning. Based on this analysis, we propose HiGNN, an innovative approach that constructs an additional new graph structure, that integrates heterophilous information by leveraging node distribution to enhance connectivity between nodes that share similar semantic characteristics. We conduct empirical assessments on node classification tasks using both homophilous and heterophilous benchmark datasets and compare HiGNN to popular GNN baselines and SoTA methods, confirming the effectiveness in improving graph representations. In addition, by incorporating heterophilous information, we demonstrate a notable enhancement in existing GNN-based approaches, and the homophily degree across real-world datasets, thus affirming the efficacy of our approach.
Abstract:This paper proposes the DistillCSE framework, which performs contrastive learning under the self-training paradigm with knowledge distillation. The potential advantage of DistillCSE is its self-enhancing feature: using a base model to provide additional supervision signals, a stronger model may be learned through knowledge distillation. However, the vanilla DistillCSE through the standard implementation of knowledge distillation only achieves marginal improvements due to severe overfitting. The further quantitative analyses demonstrate the reason that the standard knowledge distillation exhibits a relatively large variance of the teacher model's logits due to the essence of contrastive learning. To mitigate the issue induced by high variance, this paper accordingly proposed two simple yet effective solutions for knowledge distillation: a Group-P shuffling strategy as an implicit regularization and the averaging logits from multiple teacher components. Experiments on standard benchmarks demonstrate that the proposed DistillCSE outperforms many strong baseline methods and yields a new state-of-the-art performance.
Abstract:Back translation (BT) is one of the most significant technologies in NMT research fields. Existing attempts on BT share a common characteristic: they employ either beam search or random sampling to generate synthetic data with a backward model but seldom work studies the role of synthetic data in the performance of BT. This motivates us to ask a fundamental question: {\em what kind of synthetic data contributes to BT performance?} Through both theoretical and empirical studies, we identify two key factors on synthetic data controlling the back-translation NMT performance, which are quality and importance. Furthermore, based on our findings, we propose a simple yet effective method to generate synthetic data to better trade off both factors so as to yield a better performance for BT. We run extensive experiments on WMT14 DE-EN, EN-DE, and RU-EN benchmark tasks. By employing our proposed method to generate synthetic data, our BT model significantly outperforms the standard BT baselines (i.e., beam and sampling based methods for data generation), which proves the effectiveness of our proposed methods.
Abstract:Cross-domain pedestrian detection aims to generalize pedestrian detectors from one label-rich domain to another label-scarce domain, which is crucial for various real-world applications. Most recent works focus on domain alignment to train domain-adaptive detectors either at the instance level or image level. From a practical point of view, one-stage detectors are faster. Therefore, we concentrate on designing a cross-domain algorithm for rapid one-stage detectors that lacks instance-level proposals and can only perform image-level feature alignment. However, pure image-level feature alignment causes the foreground-background misalignment issue to arise, i.e., the foreground features in the source domain image are falsely aligned with background features in the target domain image. To address this issue, we systematically analyze the importance of foreground and background in image-level cross-domain alignment, and learn that background plays a more critical role in image-level cross-domain alignment. Therefore, we focus on cross-domain background feature alignment while minimizing the influence of foreground features on the cross-domain alignment stage. This paper proposes a novel framework, namely, background-focused distribution alignment (BFDA), to train domain adaptive onestage pedestrian detectors. Specifically, BFDA first decouples the background features from the whole image feature maps and then aligns them via a novel long-short-range discriminator.
Abstract:This paper aims to improve contrastive learning for sentence embeddings from two perspectives: handling dropout noise and addressing feature corruption. Specifically, for the first perspective, we identify that the dropout noise from negative pairs affects the model's performance. Therefore, we propose a simple yet effective method to deal with such type of noise. Secondly, we pinpoint the rank bottleneck of current solutions to feature corruption and propose a dimension-wise contrastive learning objective to address this issue. Both proposed methods are generic and can be applied to any contrastive learning based models for sentence embeddings. Experimental results on standard benchmarks demonstrate that combining both proposed methods leads to a gain of 1.8 points compared to the strong baseline SimCSE configured with BERT base. Furthermore, applying the proposed method to DiffCSE, another strong contrastive learning based baseline, results in a gain of 1.4 points.