Abstract:This paper explores the problem of commonsense-level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model's internal commonsense knowledge (see Figure 1). To study this issue, we introduce an automated pipeline, augmented with human-in-the-loop quality control, to establish a benchmark aimed at simulating and assessing the conflicts in MLLMs. Utilizing this pipeline, we have crafted a diagnostic benchmark comprising 374 original images and 1,122 high-quality question-answer (QA) pairs. This benchmark covers two types of conflict target and three question difficulty levels, providing a thorough assessment tool. Through this benchmark, we evaluate the conflict-resolution capabilities of nine representative MLLMs across various model families and find a noticeable over-reliance on textual queries. Drawing on these findings, we propose a novel prompting strategy, "Focus-on-Vision" (FoV), which markedly enhances MLLMs' ability to favor visual data over conflicting textual knowledge. Our detailed analysis and the newly proposed strategy significantly advance the understanding and mitigating of vision-knowledge conflicts in MLLMs. The data and code are made publicly available.
Abstract:In the present noisy intermediate scale quantum computing era, there is a critical need to devise methods for the efficient implementation of gate-based variational quantum circuits. This ensures that a range of proposed applications can be deployed on real quantum hardware. The efficiency of quantum circuit is desired both in the number of trainable gates and the depth of the overall circuit. The major concern of barren plateaus has made this need for efficiency even more acute. The problem of efficient quantum circuit realization has been extensively studied in the literature to reduce gate complexity and circuit depth. Another important approach is to design a method to reduce the \emph{parameter complexity} in a variational quantum circuit. Existing methods include hyperparameter-based parameter pruning which introduces an additional challenge of finding the best hyperparameters for different applications. In this paper, we present \emph{QAdaPrune} - an adaptive parameter pruning algorithm that automatically determines the threshold and then intelligently prunes the redundant and non-performing parameters. We show that the resulting sparse parameter sets yield quantum circuits that perform comparably to the unpruned quantum circuits and in some cases may enhance trainability of the circuits even if the original quantum circuit gets stuck in a barren plateau.\\ \noindent{\bf Reproducibility}: The source code and data are available at \url{https://github.com/aicaffeinelife/QAdaPrune.git}
Abstract:Deep neural networks (DNNs) have achieved significant success in numerous applications. The remarkable performance of DNNs is largely attributed to the availability of massive, high-quality training datasets. However, processing such massive training data requires huge computational and storage resources. Dataset distillation is a promising solution to this problem, offering the capability to compress a large dataset into a smaller distilled dataset. The model trained on the distilled dataset can achieve comparable performance to the model trained on the whole dataset. While dataset distillation has been demonstrated in image data, none have explored dataset distillation for audio data. In this work, for the first time, we propose a Dataset Distillation Framework for Audio Data (DDFAD). Specifically, we first propose the Fused Differential MFCC (FD-MFCC) as extracted features for audio data. After that, the FD-MFCC is distilled through the matching training trajectory distillation method. Finally, we propose an audio signal reconstruction algorithm based on the Griffin-Lim Algorithm to reconstruct the audio signal from the distilled FD-MFCC. Extensive experiments demonstrate the effectiveness of DDFAD on various audio datasets. In addition, we show that DDFAD has promising application prospects in many applications, such as continual learning and neural architecture search.
Abstract:Scene Graph Generation (SGG) provides basic language representation of visual scenes, requiring models to grasp complex and diverse semantics between various objects. However, this complexity and diversity in SGG also leads to underrepresentation, where part of test triplets are rare or even unseen during training, resulting in imprecise predictions. To tackle this, we propose using the SGG models with pretrained vision-language models (VLMs) to enhance representation. However, due to the gap between the pretraining and SGG, directly ensembling the pretrained VLMs leads to severe biases across relation words. Thus, we introduce LM Estimation to approximate the words' distribution underlies in the pretraining language sets, and then use the distribution for debiasing. After that, we ensemble VLMs with SGG models to enhance representation. Considering that each model may represent better at different samples, we use a certainty-aware indicator to score each sample and dynamically adjust the ensemble weights. Our method effectively addresses the words biases, enhances SGG's representation, and achieve markable performance enhancements. It is training-free and integrates well with existing SGG models.
Abstract:Federated learning has emerged as a promising distributed learning paradigm that facilitates collaborative learning among multiple parties without transferring raw data. However, most existing federated learning studies focus on either horizontal or vertical data settings, where the data of different parties are assumed to be from the same feature or sample space. In practice, a common scenario is the hybrid data setting, where data from different parties may differ both in the features and samples. To address this, we propose HybridTree, a novel federated learning approach that enables federated tree learning on hybrid data. We observe the existence of consistent split rules in trees. With the help of these split rules, we theoretically show that the knowledge of parties can be incorporated into the lower layers of a tree. Based on our theoretical analysis, we propose a layer-level solution that does not need frequent communication traffic to train a tree. Our experiments demonstrate that HybridTree can achieve comparable accuracy to the centralized setting with low computational and communication overhead. HybridTree can achieve up to 8 times speedup compared with the other baselines.
Abstract:Recently, Graph Neural Networks (GNNs), including Homogeneous Graph Neural Networks (HomoGNNs) and Heterogeneous Graph Neural Networks (HeteGNNs), have made remarkable progress in many physical scenarios, especially in communication applications. Despite achieving great success, the privacy issue of such models has also received considerable attention. Previous studies have shown that given a well-fitted target GNN, the attacker can reconstruct the sensitive training graph of this model via model inversion attacks, leading to significant privacy worries for the AI service provider. We advocate that the vulnerability comes from the target GNN itself and the prior knowledge about the shared properties in real-world graphs. Inspired by this, we propose a novel model inversion attack method on HomoGNNs and HeteGNNs, namely HomoGMI and HeteGMI. Specifically, HomoGMI and HeteGMI are gradient-descent-based optimization methods that aim to maximize the cross-entropy loss on the target GNN and the $1^{st}$ and $2^{nd}$-order proximities on the reconstructed graph. Notably, to the best of our knowledge, HeteGMI is the first attempt to perform model inversion attacks on HeteGNNs. Extensive experiments on multiple benchmarks demonstrate that the proposed method can achieve better performance than the competitors.
Abstract:Quantum Machine Learning is an emerging sub-field in machine learning where one of the goals is to perform pattern recognition tasks by encoding data into quantum states. This extension from classical to quantum domain has been made possible due to the development of hybrid quantum-classical algorithms that allow a parameterized quantum circuit to be optimized using gradient based algorithms that run on a classical computer. The similarities in training of these hybrid algorithms and classical neural networks has further led to the development of Quantum Neural Networks (QNNs). However, in the current training regime for QNNs, the gradients w.r.t objective function have to be computed on the quantum device. This computation is highly non-scalable and is affected by hardware and sampling noise present in the current generation of quantum hardware. In this paper, we propose a training algorithm that does not rely on gradient information. Specifically, we introduce a novel meta-optimization algorithm that trains a \emph{meta-optimizer} network to output parameters for the quantum circuit such that the objective function is minimized. We empirically and theoretically show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
Abstract:With the rapid development of machine learning, improving its explainability has become a crucial research goal. We study the problem of making the clusters more explainable by investigating the cluster descriptors. Given a set of objects $S$, a clustering of these objects $\pi$, and a set of tags $T$ that have not participated in the clustering algorithm. Each object in $S$ is associated with a subset of $T$. The goal is to find a representative set of tags for each cluster, referred to as the cluster descriptors, with the constraint that these descriptors we find are pairwise disjoint, and the total size of all the descriptors is minimized. In general, this problem is NP-hard. We propose a novel explainability model that reinforces the previous models in such a way that tags that do not contribute to explainability and do not sufficiently distinguish between clusters are not added to the optimal descriptors. The proposed model is formulated as a quadratic unconstrained binary optimization problem which makes it suitable for solving on modern optimization hardware accelerators. We experimentally demonstrate how a proposed explainability model can be solved on specialized hardware for accelerating combinatorial optimization, the Fujitsu Digital Annealer, and use real-life Twitter and PubMed datasets for use cases.
Abstract:Federated Learning (FL) has become a practical and popular paradigm in machine learning. However, currently, there is no systematic solution that covers diverse use cases. Practitioners often face the challenge of how to select a matching FL framework for their use case. In this work, we present UniFed, the first unified benchmark for standardized evaluation of the existing open-source FL frameworks. With 15 evaluation scenarios, we present both qualitative and quantitative evaluation results of nine existing popular open-sourced FL frameworks, from the perspectives of functionality, usability, and system performance. We also provide suggestions on framework selection based on the benchmark conclusions and point out future improvement directions.
Abstract:Sophisticated cyber attacks have plagued many high-profile businesses. To remain aware of the fast-evolving threat landscape, open-source Cyber Threat Intelligence (OSCTI) has received growing attention from the community. Commonly, knowledge about threats is presented in a vast number of OSCTI reports. Despite the pressing need for high-quality OSCTI, existing OSCTI gathering and management platforms, however, have primarily focused on isolated, low-level Indicators of Compromise. On the other hand, higher-level concepts (e.g., adversary tactics, techniques, and procedures) and their relationships have been overlooked, which contain essential knowledge about threat behaviors that is critical to uncovering the complete threat scenario. To bridge the gap, we propose SecurityKG, a system for automated OSCTI gathering and management. SecurityKG collects OSCTI reports from various sources, uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors, and constructs a security knowledge graph. SecurityKG also provides a UI that supports various types of interactivity to facilitate knowledge graph exploration.