Abstract:Text-to-image (T2I) diffusion models are widely adopted for their strong generative capabilities, yet remain vulnerable to backdoor attacks. Existing attacks typically rely on fixed textual triggers and single-entity backdoor targets, making them highly susceptible to enumeration-based input defenses and attention-consistency detection. In this work, we propose Semantic-level Backdoor Attack (SemBD), which implants backdoors at the representation level by defining triggers as continuous semantic regions rather than discrete textual patterns. Concretely, SemBD injects semantic backdoors by distillation-based editing of the key and value projection matrices in cross-attention layers, enabling diverse prompts with identical semantic compositions to reliably activate the backdoor attack. To further enhance stealthiness, SemBD incorporates a semantic regularization to prevent unintended activation under incomplete semantics, as well as multi-entity backdoor targets that avoid highly consistent cross-attention patterns. Extensive experiments demonstrate that SemBD achieves a 100% attack success rate while maintaining strong robustness against state-of-the-art input-level defenses.
Abstract:Vision-Language-Action (VLA) models are widely deployed in safety-critical embodied AI applications such as robotics. However, their complex multimodal interactions also expose new security vulnerabilities. In this paper, we investigate a backdoor threat in VLA models, where malicious inputs cause targeted misbehavior while preserving performance on clean data. Existing backdoor methods predominantly rely on inserting visible triggers into visual modality, which suffer from poor robustness and low insusceptibility in real-world settings due to environmental variability. To overcome these limitations, we introduce the State Backdoor, a novel and practical backdoor attack that leverages the robot arm's initial state as the trigger. To optimize trigger for insusceptibility and effectiveness, we design a Preference-guided Genetic Algorithm (PGA) that efficiently searches the state space for minimal yet potent triggers. Extensive experiments on five representative VLA models and five real-world tasks show that our method achieves over 90% attack success rate without affecting benign task performance, revealing an underexplored vulnerability in embodied AI systems.
Abstract:Large language models (LLMs) increasingly support multilingual understanding and generation. Meanwhile, efforts to interpret their internal mechanisms have emerged, offering insights to enhance multilingual performance. While multi-head self-attention (MHA) has proven critical in many areas, its role in multilingual capabilities remains underexplored. In this work, we study the contribution of MHA in supporting multilingual processing in LLMs. We propose Language Attention Head Importance Scores (LAHIS), an effective and efficient method that identifies attention head importance for multilingual capabilities via a single forward and backward pass through the LLM. Applying LAHIS to Aya-23-8B, Llama-3.2-3B, and Mistral-7B-v0.1, we reveal the existence of both language-specific and language-general heads. Language-specific heads enable cross-lingual attention transfer to guide the model toward target language contexts and mitigate off-target language generation issue, contributing to addressing challenges in multilingual LLMs. We also introduce a lightweight adaptation that learns a soft head mask to modulate attention outputs over language heads, requiring only 20 tunable parameters to improve XQuAD accuracy. Overall, our work enhances both the interpretability and multilingual capabilities of LLMs from the perspective of MHA.
Abstract:Vision-Language Models (VLMs) are increasingly deployed in real-world applications, but their high inference cost makes them vulnerable to resource consumption attacks. Prior attacks attempt to extend VLM output sequences by optimizing adversarial images, thereby increasing inference costs. However, these extended outputs often introduce irrelevant abnormal content, compromising attack stealthiness. This trade-off between effectiveness and stealthiness poses a major limitation for existing attacks. To address this challenge, we propose \textit{Hidden Tail}, a stealthy resource consumption attack that crafts prompt-agnostic adversarial images, inducing VLMs to generate maximum-length outputs by appending special tokens invisible to users. Our method employs a composite loss function that balances semantic preservation, repetitive special token induction, and suppression of the end-of-sequence (EOS) token, optimized via a dynamic weighting strategy. Extensive experiments show that \textit{Hidden Tail} outperforms existing attacks, increasing output length by up to 19.2$\times$ and reaching the maximum token limit, while preserving attack stealthiness. These results highlight the urgent need to improve the robustness of VLMs against efficiency-oriented adversarial threats. Our code is available at https://github.com/zhangrui4041/Hidden_Tail.
Abstract:Large Audio-Language Models (LALMs) are increasingly deployed in real-world applications, yet their robustness against malicious audio injection attacks remains underexplored. This study systematically evaluates five leading LALMs across four attack scenarios: Audio Interference Attack, Instruction Following Attack, Context Injection Attack, and Judgment Hijacking Attack. Using metrics like Defense Success Rate, Context Robustness Score, and Judgment Robustness Index, their vulnerabilities and resilience were quantitatively assessed. Experimental results reveal significant performance disparities among models; no single model consistently outperforms others across all attack types. The position of malicious content critically influences attack effectiveness, particularly when placed at the beginning of sequences. A negative correlation between instruction-following capability and robustness suggests models adhering strictly to instructions may be more susceptible, contrasting with greater resistance by safety-aligned models. Additionally, system prompts show mixed effectiveness, indicating the need for tailored strategies. This work introduces a benchmark framework and highlights the importance of integrating robustness into training pipelines. Findings emphasize developing multi-modal defenses and architectural designs that decouple capability from susceptibility for secure LALMs deployment.
Abstract:In recent years, deep learning-based Monocular Depth Estimation (MDE) models have been widely applied in fields such as autonomous driving and robotics. However, their vulnerability to backdoor attacks remains unexplored. To fill the gap in this area, we conduct a comprehensive investigation of backdoor attacks against MDE models. Typically, existing backdoor attack methods can not be applied to MDE models. This is because the label used in MDE is in the form of a depth map. To address this, we propose BadDepth, the first backdoor attack targeting MDE models. BadDepth overcomes this limitation by selectively manipulating the target object's depth using an image segmentation model and restoring the surrounding areas via depth completion, thereby generating poisoned datasets for object-level backdoor attacks. To improve robustness in physical world scenarios, we further introduce digital-to-physical augmentation to adapt to the domain gap between the physical world and the digital domain. Extensive experiments on multiple models validate the effectiveness of BadDepth in both the digital domain and the physical world, without being affected by environmental factors.
Abstract:With the widespread application of super-resolution (SR) in various fields, researchers have begun to investigate its security. Previous studies have demonstrated that SR models can also be subjected to backdoor attacks through data poisoning, affecting downstream tasks. A backdoor SR model generates an attacker-predefined target image when given a triggered image while producing a normal high-resolution (HR) output for clean images. However, prior backdoor attacks on SR models have primarily focused on the stealthiness of poisoned low-resolution (LR) images while ignoring the stealthiness of poisoned HR images, making it easy for users to detect anomalous data. To address this problem, we propose BadSR, which improves the stealthiness of poisoned HR images. The key idea of BadSR is to approximate the clean HR image and the pre-defined target image in the feature space while ensuring that modifications to the clean HR image remain within a constrained range. The poisoned HR images generated by BadSR can be integrated with existing triggers. To further improve the effectiveness of BadSR, we design an adversarially optimized trigger and a backdoor gradient-driven poisoned sample selection method based on a genetic algorithm. The experimental results show that BadSR achieves a high attack success rate in various models and data sets, significantly affecting downstream tasks.
Abstract:Traffic sign recognition (TSR) systems are crucial for autonomous driving but are vulnerable to backdoor attacks. Existing physical backdoor attacks either lack stealth, provide inflexible attack control, or ignore emerging Vision-Large-Language-Models (VLMs). In this paper, we introduce FIGhost, the first physical-world backdoor attack leveraging fluorescent ink as triggers. Fluorescent triggers are invisible under normal conditions and activated stealthily by ultraviolet light, providing superior stealthiness, flexibility, and untraceability. Inspired by real-world graffiti, we derive realistic trigger shapes and enhance their robustness via an interpolation-based fluorescence simulation algorithm. Furthermore, we develop an automated backdoor sample generation method to support three attack objectives. Extensive evaluations in the physical world demonstrate FIGhost's effectiveness against state-of-the-art detectors and VLMs, maintaining robustness under environmental variations and effectively evading existing defenses.




Abstract:Model Context Protocol (MCP) standardizes interface mapping for large language models (LLMs) to access external data and tools, which revolutionizes the paradigm of tool selection and facilitates the rapid expansion of the LLM agent tool ecosystem. However, as the MCP is increasingly adopted, third-party customized versions of the MCP server expose potential security vulnerabilities. In this paper, we first introduce a novel security threat, which we term the MCP Preference Manipulation Attack (MPMA). An attacker deploys a customized MCP server to manipulate LLMs, causing them to prioritize it over other competing MCP servers. This can result in economic benefits for attackers, such as revenue from paid MCP services or advertising income generated from free servers. To achieve MPMA, we first design a Direct Preference Manipulation Attack ($\mathtt{DPMA}$) that achieves significant effectiveness by inserting the manipulative word and phrases into the tool name and description. However, such a direct modification is obvious to users and lacks stealthiness. To address these limitations, we further propose Genetic-based Advertising Preference Manipulation Attack ($\mathtt{GAPMA}$). $\mathtt{GAPMA}$ employs four commonly used strategies to initialize descriptions and integrates a Genetic Algorithm (GA) to enhance stealthiness. The experiment results demonstrate that $\mathtt{GAPMA}$ balances high effectiveness and stealthiness. Our study reveals a critical vulnerability of the MCP in open ecosystems, highlighting an urgent need for robust defense mechanisms to ensure the fairness of the MCP ecosystem.
Abstract:Recent research highlights concerns about the trustworthiness of third-party Pre-Trained Language Models (PTLMs) due to potential backdoor attacks. These backdoored PTLMs, however, are effective only for specific pre-defined downstream tasks. In reality, these PTLMs can be adapted to many other unrelated downstream tasks. Such adaptation may lead to unforeseen consequences in downstream model outputs, consequently raising user suspicion and compromising attack stealthiness. We refer to this phenomenon as backdoor complications. In this paper, we undertake the first comprehensive quantification of backdoor complications. Through extensive experiments using 4 prominent PTLMs and 16 text classification benchmark datasets, we demonstrate the widespread presence of backdoor complications in downstream models fine-tuned from backdoored PTLMs. The output distribution of triggered samples significantly deviates from that of clean samples. Consequently, we propose a backdoor complication reduction method leveraging multi-task learning to mitigate complications without prior knowledge of downstream tasks. The experimental results demonstrate that our proposed method can effectively reduce complications while maintaining the efficacy and consistency of backdoor attacks. Our code is available at https://github.com/zhangrui4041/Backdoor_Complications.