Abstract:Researchers have long recognized the socio-technical gaps in personal tracking research, where machines can never fully model the complexity of human behavior, making it only able to produce basic rule-based outputs or "black-box" results that lack clear explanations. Real-world deployments rely on experts for this complex translation from sparse data to meaningful insights. In this study, we consider this translation process from data to insights by experts as "sensemaking" and explore how HCI researchers can support it through Vital Insight, an evidence-based 'sensemaking' system that combines direct representation and indirect inference through visualization and Large Language Models. We evaluate Vital Insight in user testing sessions with 14 experts in multi-modal tracking, synthesize design implications, and develop an expert sensemaking model where they iteratively move between direct data representations and AI-supported inferences to explore, retrieve, question, and validate insights.
Abstract:In this paper, we focus on enhancing a diffusion-based text-to-video (T2V) model during the post-training phase by distilling a highly capable consistency model from a pretrained T2V model. Our proposed method, T2V-Turbo-v2, introduces a significant advancement by integrating various supervision signals, including high-quality training data, reward model feedback, and conditional guidance, into the consistency distillation process. Through comprehensive ablation studies, we highlight the crucial importance of tailoring datasets to specific learning objectives and the effectiveness of learning from diverse reward models for enhancing both the visual quality and text-video alignment. Additionally, we highlight the vast design space of conditional guidance strategies, which centers on designing an effective energy function to augment the teacher ODE solver. We demonstrate the potential of this approach by extracting motion guidance from the training datasets and incorporating it into the ODE solver, showcasing its effectiveness in improving the motion quality of the generated videos with the improved motion-related metrics from VBench and T2V-CompBench. Empirically, our T2V-Turbo-v2 establishes a new state-of-the-art result on VBench, with a Total score of 85.13, surpassing proprietary systems such as Gen-3 and Kling.
Abstract:Offline imitation learning enables learning a policy solely from a set of expert demonstrations, without any environment interaction. To alleviate the issue of distribution shift arising due to the small amount of expert data, recent works incorporate large numbers of auxiliary demonstrations alongside the expert data. However, the performance of these approaches rely on assumptions about the quality and composition of the auxiliary data. However, they are rarely successful when those assumptions do not hold. To address this limitation, we propose Robust Offline Imitation from Diverse Auxiliary Data (ROIDA). ROIDA first identifies high-quality transitions from the entire auxiliary dataset using a learned reward function. These high-reward samples are combined with the expert demonstrations for weighted behavioral cloning. For lower-quality samples, ROIDA applies temporal difference learning to steer the policy towards high-reward states, improving long-term returns. This two-pronged approach enables our framework to effectively leverage both high and low-quality data without any assumptions. Extensive experiments validate that ROIDA achieves robust and consistent performance across multiple auxiliary datasets with diverse ratios of expert and non-expert demonstrations. ROIDA effectively leverages unlabeled auxiliary data, outperforming prior methods reliant on specific data assumptions.
Abstract:Language models (LMs) possess a strong capability to comprehend natural language, making them effective in translating human instructions into detailed plans for simple robot tasks. Nevertheless, it remains a significant challenge to handle long-horizon tasks, especially in subtask identification and allocation for cooperative heterogeneous robot teams. To address this issue, we propose a Language Model-Driven Multi-Agent PDDL Planner (LaMMA-P), a novel multi-agent task planning framework that achieves state-of-the-art performance on long-horizon tasks. LaMMA-P integrates the strengths of the LMs' reasoning capability and the traditional heuristic search planner to achieve a high success rate and efficiency while demonstrating strong generalization across tasks. Additionally, we create MAT-THOR, a comprehensive benchmark that features household tasks with two different levels of complexity based on the AI2-THOR environment. The experimental results demonstrate that LaMMA-P achieves a 105% higher success rate and 36% higher efficiency than existing LM-based multi-agent planners. The experimental videos, code, and datasets of this work as well as the detailed prompts used in each module are available at https://lamma-p.github.io.
Abstract:Recent studies show that text-to-image (T2I) models are vulnerable to adversarial attacks, especially with noun perturbations in text prompts. In this study, we investigate the impact of adversarial attacks on different POS tags within text prompts on the images generated by T2I models. We create a high-quality dataset for realistic POS tag token swapping and perform gradient-based attacks to find adversarial suffixes that mislead T2I models into generating images with altered tokens. Our empirical results show that the attack success rate (ASR) varies significantly among different POS tag categories, with nouns, proper nouns, and adjectives being the easiest to attack. We explore the mechanism behind the steering effect of adversarial suffixes, finding that the number of critical tokens and content fusion vary among POS tags, while features like suffix transferability are consistent across categories. We have made our implementation publicly available at - https://github.com/shahariar-shibli/Adversarial-Attack-on-POS-Tags.
Abstract:Cooperative perception systems play a vital role in enhancing the safety and efficiency of vehicular autonomy. Although recent studies have highlighted the efficacy of vehicle-to-everything (V2X) communication techniques in autonomous driving, a significant challenge persists: how to efficiently integrate multiple high-bandwidth features across an expanding network of connected agents such as vehicles and infrastructure. In this paper, we introduce CoMamba, a novel cooperative 3D detection framework designed to leverage state-space models for real-time onboard vehicle perception. Compared to prior state-of-the-art transformer-based models, CoMamba enjoys being a more scalable 3D model using bidirectional state space models, bypassing the quadratic complexity pain-point of attention mechanisms. Through extensive experimentation on V2X/V2V datasets, CoMamba achieves superior performance compared to existing methods while maintaining real-time processing capabilities. The proposed framework not only enhances object detection accuracy but also significantly reduces processing time, making it a promising solution for next-generation cooperative perception systems in intelligent transportation networks.
Abstract:Environment prediction frameworks are critical for the safe navigation of autonomous vehicles (AVs) in dynamic settings. LiDAR-generated occupancy grid maps (L-OGMs) offer a robust bird's-eye view for the scene representation, enabling self-supervised joint scene predictions while exhibiting resilience to partial observability and perception detection failures. Prior approaches have focused on deterministic L-OGM prediction architectures within the grid cell space. While these methods have seen some success, they frequently produce unrealistic predictions and fail to capture the stochastic nature of the environment. Additionally, they do not effectively integrate additional sensor modalities present in AVs. Our proposed framework performs stochastic L-OGM prediction in the latent space of a generative architecture and allows for conditioning on RGB cameras, maps, and planned trajectories. We decode predictions using either a single-step decoder, which provides high-quality predictions in real-time, or a diffusion-based batch decoder, which can further refine the decoded frames to address temporal consistency issues and reduce compression losses. Our experiments on the nuScenes and Waymo Open datasets show that all variants of our approach qualitatively and quantitatively outperform prior approaches.
Abstract:Reinforcement Learning (RL) has enabled social robots to generate trajectories without human-designed rules or interventions, which makes it more effective than hard-coded systems for generalizing to complex real-world scenarios. However, social navigation is a safety-critical task that requires robots to avoid collisions with pedestrians while previous RL-based solutions fall short in safety performance in complex environments. To enhance the safety of RL policies, to the best of our knowledge, we propose the first algorithm, SoNIC, that integrates adaptive conformal inference (ACI) with constrained reinforcement learning (CRL) to learn safe policies for social navigation. More specifically, our method augments RL observations with ACI-generated nonconformity scores and provides explicit guidance for agents to leverage the uncertainty metrics to avoid safety-critical areas by incorporating safety constraints with spatial relaxation. Our method outperforms state-of-the-art baselines in terms of both safety and adherence to social norms by a large margin and demonstrates much stronger robustness to out-of-distribution scenarios. Our code and video demos are available on our project website: https://sonic-social-nav.github.io/.
Abstract:Training intelligent agents to navigate highly interactive environments presents significant challenges. While guided meta reinforcement learning (RL) approach that first trains a guiding policy to train the ego agent has proven effective in improving generalizability across various levels of interaction, the state-of-the-art method tends to be overly sensitive to extreme cases, impairing the agents' performance in the more common scenarios. This study introduces a novel training framework that integrates guided meta RL with importance sampling (IS) to optimize training distributions for navigating highly interactive driving scenarios, such as T-intersections. Unlike traditional methods that may underrepresent critical interactions or overemphasize extreme cases during training, our approach strategically adjusts the training distribution towards more challenging driving behaviors using IS proposal distributions and applies the importance ratio to de-bias the result. By estimating a naturalistic distribution from real-world datasets and employing a mixture model for iterative training refinements, the framework ensures a balanced focus across common and extreme driving scenarios. Experiments conducted with both synthetic dataset and T-intersection scenarios from the InD dataset demonstrate not only accelerated training but also improvement in agent performance under naturalistic conditions, showcasing the efficacy of combining IS with meta RL in training reliable autonomous agents for highly interactive navigation tasks.
Abstract:Deep learning-based trajectory prediction models for autonomous driving often struggle with generalization to out-of-distribution (OOD) scenarios, sometimes performing worse than simple rule-based models. To address this limitation, we propose a novel framework, Adaptive Prediction Ensemble (APE), which integrates deep learning and rule-based prediction experts. A learned routing function, trained concurrently with the deep learning model, dynamically selects the most reliable prediction based on the input scenario. Our experiments on large-scale datasets, including Waymo Open Motion Dataset (WOMD) and Argoverse, demonstrate improvement in zero-shot generalization across datasets. We show that our method outperforms individual prediction models and other variants, particularly in long-horizon prediction and scenarios with a high proportion of OOD data. This work highlights the potential of hybrid approaches for robust and generalizable motion prediction in autonomous driving.