Abstract:While MPEG-standardized video-based point cloud compression (VPCC) achieves high compression efficiency for human perception, it struggles with a poor trade-off between bitrate savings and detection accuracy when supporting 3D object detectors. This limitation stems from VPCC's inability to prioritize regions of different importance within point clouds. To address this issue, we propose DetVPCC, a novel method integrating region-of-interest (RoI) encoding with VPCC for efficient point cloud sequence compression while preserving the 3D object detection accuracy. Specifically, we augment VPCC to support RoI-based compression by assigning spatially non-uniform quality levels. Then, we introduce a lightweight RoI detector to identify crucial regions that potentially contain objects. Experiments on the nuScenes dataset demonstrate that our approach significantly improves the detection accuracy. The code and demo video are available in supplementary materials.
Abstract:The sheer volume of scientific experimental results and complex technical statements, often presented in tabular formats, presents a formidable barrier to individuals acquiring preferred information. The realms of scientific reasoning and content generation that adhere to user preferences encounter distinct challenges. In this work, we present a new task for generating fluent and logical descriptions that match user preferences over scientific tabular data, aiming to automate scientific document analysis. To facilitate research in this direction, we construct a new challenging dataset CTRLSciTab consisting of table-description pairs extracted from the scientific literature, with highlighted cells and corresponding domain-specific knowledge base. We evaluated popular pre-trained language models to establish a baseline and proposed a novel architecture outperforming competing approaches. The results showed that large models struggle to produce accurate content that aligns with user preferences. As the first of its kind, our work should motivate further research in scientific domains.