Abstract:Zero-shot referring image segmentation aims to locate and segment the target region based on a referring expression, with the primary challenge of aligning and matching semantics across visual and textual modalities without training. Previous works address this challenge by utilizing Vision-Language Models and mask proposal networks for region-text matching. However, this paradigm may lead to incorrect target localization due to the inherent ambiguity and diversity of free-form referring expressions. To alleviate this issue, we present LGD (Leveraging Generative Descriptions), a framework that utilizes the advanced language generation capabilities of Multi-Modal Large Language Models to enhance region-text matching performance in Vision-Language Models. Specifically, we first design two kinds of prompts, the attribute prompt and the surrounding prompt, to guide the Multi-Modal Large Language Models in generating descriptions related to the crucial attributes of the referent object and the details of surrounding objects, referred to as attribute description and surrounding description, respectively. Secondly, three visual-text matching scores are introduced to evaluate the similarity between instance-level visual features and textual features, which determines the mask most associated with the referring expression. The proposed method achieves new state-of-the-art performance on three public datasets RefCOCO, RefCOCO+ and RefCOCOg, with maximum improvements of 9.97% in oIoU and 11.29% in mIoU compared to previous methods.
Abstract:In recent years, binary code learning, a.k.a hashing, has received extensive attention in large-scale multimedia retrieval. It aims to encode high-dimensional data points to binary codes, hence the original high-dimensional metric space can be efficiently approximated via Hamming space. However, most existing hashing methods adopted offline batch learning, which is not suitable to handle incremental datasets with streaming data or new instances. In contrast, the robustness of the existing online hashing remains as an open problem, while the embedding of supervised/semantic information hardly boosts the performance of the online hashing, mainly due to the defect of unknown category numbers in supervised learning. In this paper, we proposed an online hashing scheme, termed Hadamard Codebook based Online Hashing (HCOH), which aims to solve the above problems towards robust and supervised online hashing. In particular, we first assign an appropriate high-dimensional binary codes to each class label, which is generated randomly by Hadamard codes to each class label, which is generated randomly by Hadamard codes. Subsequently, LSH is adopted to reduce the length of such Hadamard codes in accordance with the hash bits, which can adapt the predefined binary codes online, and theoretically guarantee the semantic similarity. Finally, we consider the setting of stochastic data acquisition, which facilitates our method to efficiently learn the corresponding hashing functions via stochastic gradient descend (SGD) online. Notably, the proposed HCOH can be embedded with supervised labels and it not limited to a predefined category number. Extensive experiments on three widely-used benchmarks demonstrate the merits of the proposed scheme over the state-of-the-art methods. The code is available at https://github.com/lmbxmu/mycode/tree/master/2018ACMMM_HCOH.