School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
Abstract:Tumor segmentation plays a critical role in histopathology, but it requires costly, fine-grained image-mask pairs annotated by pathologists. Thus, synthesizing histopathology data to expand the dataset is highly desirable. Previous works suffer from inaccuracies and limited diversity in image-mask pairs, both of which affect training segmentation, particularly in small-scale datasets and the inherently complex nature of histopathology images. To address this challenge, we propose PathoPainter, which reformulates image-mask pair generation as a tumor inpainting task. Specifically, our approach preserves the background while inpainting the tumor region, ensuring precise alignment between the generated image and its corresponding mask. To enhance dataset diversity while maintaining biological plausibility, we incorporate a sampling mechanism that conditions tumor inpainting on regional embeddings from a different image. Additionally, we introduce a filtering strategy to exclude uncertain synthetic regions, further improving the quality of the generated data. Our comprehensive evaluation spans multiple datasets featuring diverse tumor types and various training data scales. As a result, segmentation improved significantly with our synthetic data, surpassing existing segmentation data synthesis approaches, e.g., 75.69% -> 77.69% on CAMELYON16. The code is available at https://github.com/HongLiuuuuu/PathoPainter.
Abstract:Leveraging multimodal data, particularly the integration of whole-slide histology images (WSIs) and transcriptomic profiles, holds great promise for improving cancer survival prediction. However, excessive redundancy in multimodal data can degrade model performance. In this paper, we propose Adaptive Prototype Learning (APL), a novel and effective approach for multimodal cancer survival analysis. APL adaptively learns representative prototypes in a data-driven manner, reducing redundancy while preserving critical information. Our method employs two sets of learnable query vectors that serve as a bridge between high-dimensional representations and survival prediction, capturing task-relevant features. Additionally, we introduce a multimodal mixed self-attention mechanism to enable cross-modal interactions, further enhancing information fusion. Extensive experiments on five benchmark cancer datasets demonstrate the superiority of our approach over existing methods. The code is available at https://github.com/HongLiuuuuu/APL.
Abstract:The widespread application of 3D human pose estimation (HPE) is limited by resource-constrained edge devices, requiring more efficient models. A key approach to enhancing efficiency involves designing networks based on the structural characteristics of input data. However, effectively utilizing the structural priors in human skeletal inputs remains challenging. To address this, we leverage both explicit and implicit spatio-temporal priors of the human body through innovative model design and a pre-training proxy task. First, we propose a Nano Human Topology Network (NanoHTNet), a tiny 3D HPE network with stacked Hierarchical Mixers to capture explicit features. Specifically, the spatial Hierarchical Mixer efficiently learns the human physical topology across multiple semantic levels, while the temporal Hierarchical Mixer with discrete cosine transform and low-pass filtering captures local instantaneous movements and global action coherence. Moreover, Efficient Temporal-Spatial Tokenization (ETST) is introduced to enhance spatio-temporal interaction and reduce computational complexity significantly. Second, PoseCLR is proposed as a general pre-training method based on contrastive learning for 3D HPE, aimed at extracting implicit representations of human topology. By aligning 2D poses from diverse viewpoints in the proxy task, PoseCLR aids 3D HPE encoders like NanoHTNet in more effectively capturing the high-dimensional features of the human body, leading to further performance improvements. Extensive experiments verify that NanoHTNet with PoseCLR outperforms other state-of-the-art methods in efficiency, making it ideal for deployment on edge devices like the Jetson Nano. Code and models are available at https://github.com/vefalun/NanoHTNet.
Abstract:The advent of artificial intelligence has significantly enhanced credit scoring technologies. Despite the remarkable efficacy of advanced deep learning models, mainstream adoption continues to favor tree-structured models due to their robust predictive performance on tabular data. Although pretrained models have seen considerable development, their application within the financial realm predominantly revolves around question-answering tasks and the use of such models for tabular-structured credit scoring datasets remains largely unexplored. Tabular-oriented large models, such as TabPFN, has made the application of large models in credit scoring feasible, albeit can only processing with limited sample sizes. This paper provides a novel framework to combine tabular-tailored dataset distillation technique with the pretrained model, empowers the scalability for TabPFN. Furthermore, though class imbalance distribution is the common nature in financial datasets, its influence during dataset distillation has not been explored. We thus integrate the imbalance-aware techniques during dataset distillation, resulting in improved performance in financial datasets (e.g., a 2.5% enhancement in AUC). This study presents a novel framework for scaling up the application of large pretrained models on financial tabular datasets and offers a comparative analysis of the influence of class imbalance on the dataset distillation process. We believe this approach can broaden the applications and downstream tasks of large models in the financial domain.
Abstract:Recent multi-frame lifting methods have dominated the 3D human pose estimation. However, previous methods ignore the intricate dependence within the 2D pose sequence and learn single temporal correlation. To alleviate this limitation, we propose TCPFormer, which leverages an implicit pose proxy as an intermediate representation. Each proxy within the implicit pose proxy can build one temporal correlation therefore helping us learn more comprehensive temporal correlation of human motion. Specifically, our method consists of three key components: Proxy Update Module (PUM), Proxy Invocation Module (PIM), and Proxy Attention Module (PAM). PUM first uses pose features to update the implicit pose proxy, enabling it to store representative information from the pose sequence. PIM then invocates and integrates the pose proxy with the pose sequence to enhance the motion semantics of each pose. Finally, PAM leverages the above mapping between the pose sequence and pose proxy to enhance the temporal correlation of the whole pose sequence. Experiments on the Human3.6M and MPI-INF-3DHP datasets demonstrate that our proposed TCPFormer outperforms the previous state-of-the-art methods.
Abstract:Anatomical abnormality detection and report generation of chest X-ray (CXR) are two essential tasks in clinical practice. The former aims at localizing and characterizing cardiopulmonary radiological findings in CXRs, while the latter summarizes the findings in a detailed report for further diagnosis and treatment. Existing methods often focused on either task separately, ignoring their correlation. This work proposes a co-evolutionary abnormality detection and report generation (CoE-DG) framework. The framework utilizes both fully labeled (with bounding box annotations and clinical reports) and weakly labeled (with reports only) data to achieve mutual promotion between the abnormality detection and report generation tasks. Specifically, we introduce a bi-directional information interaction strategy with generator-guided information propagation (GIP) and detector-guided information propagation (DIP). For semi-supervised abnormality detection, GIP takes the informative feature extracted by the generator as an auxiliary input to the detector and uses the generator's prediction to refine the detector's pseudo labels. We further propose an intra-image-modal self-adaptive non-maximum suppression module (SA-NMS). This module dynamically rectifies pseudo detection labels generated by the teacher detection model with high-confidence predictions by the student.Inversely, for report generation, DIP takes the abnormalities' categories and locations predicted by the detector as input and guidance for the generator to improve the generated reports.
Abstract:Non-Centralized Continual Learning (NCCL) has become an emerging paradigm for enabling distributed devices such as vehicles and servers to handle streaming data from a joint non-stationary environment. To achieve high reliability and scalability in deploying this paradigm in distributed systems, it is essential to conquer challenges stemming from both spatial and temporal dimensions, manifesting as distribution shifts, catastrophic forgetting, heterogeneity, and privacy issues. This survey focuses on a comprehensive examination of the development of the non-centralized continual learning algorithms and the real-world deployment across distributed devices. We begin with an introduction to the background and fundamentals of non-centralized learning and continual learning. Then, we review existing solutions from three levels to represent how existing techniques alleviate the catastrophic forgetting and distribution shift. Additionally, we delve into the various types of heterogeneity issues, security, and privacy attributes, as well as real-world applications across three prevalent scenarios. Furthermore, we establish a large-scale benchmark to revisit this problem and analyze the performance of the state-of-the-art NCCL approaches. Finally, we discuss the important challenges and future research directions in NCCL.
Abstract:Q-learning is a widely used reinforcement learning technique for solving path planning problems. It primarily involves the interaction between an agent and its environment, enabling the agent to learn an optimal strategy that maximizes cumulative rewards. Although many studies have reported the effectiveness of Q-learning, it still faces slow convergence issues in practical applications. To address this issue, we propose the NDR-QL method, which utilizes neural network outputs as heuristic information to accelerate the convergence process of Q-learning. Specifically, we improved the dual-output neural network model by introducing a start-end channel separation mechanism and enhancing the feature fusion process. After training, the proposed NDR model can output a narrowly focused optimal probability distribution, referred to as the guideline, and a broadly distributed suboptimal distribution, referred to as the region. Subsequently, based on the guideline prediction, we calculate the continuous reward function for the Q-learning method, and based on the region prediction, we initialize the Q-table with a bias. We conducted training, validation, and path planning simulation experiments on public datasets. The results indicate that the NDR model outperforms previous methods by up to 5\% in prediction accuracy. Furthermore, the proposed NDR-QL method improves the convergence speed of the baseline Q-learning method by 90\% and also surpasses the previously improved Q-learning methods in path quality metrics.
Abstract:With the rapid advancement of pre-trained large language models (LLMs), recent endeavors have leveraged the capabilities of LLMs in relevance modeling, resulting in enhanced performance. This is usually done through the process of fine-tuning LLMs on specifically annotated datasets to determine the relevance between queries and items. However, there are two limitations when LLMs are naively employed for relevance modeling through fine-tuning and inference. First, it is not inherently efficient for performing nuanced tasks beyond simple yes or no answers, such as assessing search relevance. It may therefore tend to be overconfident and struggle to distinguish fine-grained degrees of relevance (e.g., strong relevance, weak relevance, irrelevance) used in search engines. Second, it exhibits significant performance degradation when confronted with data distribution shift in real-world scenarios. In this paper, we propose a novel Distribution-Aware Robust Learning framework (DaRL) for relevance modeling in Alipay Search. Specifically, we design an effective loss function to enhance the discriminability of LLM-based relevance modeling across various fine-grained degrees of query-item relevance. To improve the generalizability of LLM-based relevance modeling, we first propose the Distribution-Aware Sample Augmentation (DASA) module. This module utilizes out-of-distribution (OOD) detection techniques to actively select appropriate samples that are not well covered by the original training set for model fine-tuning. Furthermore, we adopt a multi-stage fine-tuning strategy to simultaneously improve in-distribution (ID) and OOD performance, bridging the performance gap between them. DaRL has been deployed online to serve the Alipay's insurance product search...
Abstract:Cognitive impairment detection through spontaneous speech offers potential for early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The PROCESS Grand Challenge, part of ICASSP 2025, focuses on advancing this field with innovative solutions for classification and regression tasks. In this work, we integrate interpretable features with temporal features extracted from pre-trained models through a multimodal fusion strategy. For the classification task, our model achieved an F1-score of 0.649 in predicting cognitive states (healthy, MCI, dementia). For the regression task, which involves MMSE score prediction, we obtained a root-mean-square error (RMSE) of 2.628. These results led to our team securing the top overall ranking in the competition.