Abstract:Recent multi-frame lifting methods have dominated the 3D human pose estimation. However, previous methods ignore the intricate dependence within the 2D pose sequence and learn single temporal correlation. To alleviate this limitation, we propose TCPFormer, which leverages an implicit pose proxy as an intermediate representation. Each proxy within the implicit pose proxy can build one temporal correlation therefore helping us learn more comprehensive temporal correlation of human motion. Specifically, our method consists of three key components: Proxy Update Module (PUM), Proxy Invocation Module (PIM), and Proxy Attention Module (PAM). PUM first uses pose features to update the implicit pose proxy, enabling it to store representative information from the pose sequence. PIM then invocates and integrates the pose proxy with the pose sequence to enhance the motion semantics of each pose. Finally, PAM leverages the above mapping between the pose sequence and pose proxy to enhance the temporal correlation of the whole pose sequence. Experiments on the Human3.6M and MPI-INF-3DHP datasets demonstrate that our proposed TCPFormer outperforms the previous state-of-the-art methods.
Abstract:Human Mesh Reconstruction (HMR) from monocular video plays an important role in human-robot interaction and collaboration. However, existing video-based human mesh reconstruction methods face a trade-off between accurate reconstruction and smooth motion. These methods design networks based on either RNNs or attention mechanisms to extract local temporal correlations or global temporal dependencies, but the lack of complementary long-term information and local details limits their performance. To address this problem, we propose a \textbf{D}ual-branch \textbf{G}raph \textbf{T}ransformer network for 3D human mesh \textbf{R}econstruction from video, named DGTR. DGTR employs a dual-branch network including a Global Motion Attention (GMA) branch and a Local Details Refine (LDR) branch to parallelly extract long-term dependencies and local crucial information, helping model global human motion and local human details (e.g., local motion, tiny movement). Specifically, GMA utilizes a global transformer to model long-term human motion. LDR combines modulated graph convolutional networks and the transformer framework to aggregate local information in adjacent frames and extract crucial information of human details. Experiments demonstrate that our DGTR outperforms state-of-the-art video-based methods in reconstruction accuracy and maintains competitive motion smoothness. Moreover, DGTR utilizes fewer parameters and FLOPs, which validate the effectiveness and efficiency of the proposed DGTR. Code is publicly available at \href{https://github.com/TangTao-PKU/DGTR}{\textcolor{myBlue}{https://github.com/TangTao-PKU/DGTR}}.
Abstract:Depth estimation is a crucial technology in robotics. Recently, self-supervised depth estimation methods have demonstrated great potential as they can efficiently leverage large amounts of unlabelled real-world data. However, most existing methods are designed under the assumption of static scenes, which hinders their adaptability in dynamic environments. To address this issue, we present D$^3$epth, a novel method for self-supervised depth estimation in dynamic scenes. It tackles the challenge of dynamic objects from two key perspectives. First, within the self-supervised framework, we design a reprojection constraint to identify regions likely to contain dynamic objects, allowing the construction of a dynamic mask that mitigates their impact at the loss level. Second, for multi-frame depth estimation, we introduce a cost volume auto-masking strategy that leverages adjacent frames to identify regions associated with dynamic objects and generate corresponding masks. This provides guidance for subsequent processes. Furthermore, we propose a spectral entropy uncertainty module that incorporates spectral entropy to guide uncertainty estimation during depth fusion, effectively addressing issues arising from cost volume computation in dynamic environments. Extensive experiments on KITTI and Cityscapes datasets demonstrate that the proposed method consistently outperforms existing self-supervised monocular depth estimation baselines. Code is available at \url{https://github.com/Csyunling/D3epth}.
Abstract:Although existing video-based 3D human mesh recovery methods have made significant progress, simultaneously estimating human pose and shape from low-resolution image features limits their performance. These image features lack sufficient spatial information about the human body and contain various noises (e.g., background, lighting, and clothing), which often results in inaccurate pose and inconsistent motion. Inspired by the rapid advance in human pose estimation, we discover that compared to image features, skeletons inherently contain accurate human pose and motion. Therefore, we propose a novel semiAnalytical Regressor using disenTangled Skeletal representations for human mesh recovery from videos, called ARTS. Specifically, a skeleton estimation and disentanglement module is proposed to estimate the 3D skeletons from a video and decouple them into disentangled skeletal representations (i.e., joint position, bone length, and human motion). Then, to fully utilize these representations, we introduce a semi-analytical regressor to estimate the parameters of the human mesh model. The regressor consists of three modules: Temporal Inverse Kinematics (TIK), Bone-guided Shape Fitting (BSF), and Motion-Centric Refinement (MCR). TIK utilizes joint position to estimate initial pose parameters and BSF leverages bone length to regress bone-aligned shape parameters. Finally, MCR combines human motion representation with image features to refine the initial human model parameters. Extensive experiments demonstrate that our ARTS surpasses existing state-of-the-art video-based methods in both per-frame accuracy and temporal consistency on popular benchmarks: 3DPW, MPI-INF-3DHP, and Human3.6M. Code is available at https://github.com/TangTao-PKU/ARTS.
Abstract:In this paper, we investigate diagonal estimation for large or implicit matrices, aiming to develop a novel and efficient stochastic algorithm that incorporates adaptive parameter selection. We explore the influence of different eigenvalue distributions on diagonal estimation and analyze the necessity of introducing the projection method and adaptive parameter optimization into the stochastic diagonal estimator. Based on this analysis, we derive a lower bound on the number of random query vectors needed to satisfy a given probabilistic error bound, which forms the foundation of our adaptive stochastic diagonal estimation algorithm. Finally, numerical experiments demonstrate the effectiveness of the proposed estimator for various matrix types, showcasing its efficiency and stability compared to other existing stochastic diagonal estimation methods.
Abstract:Few-Shot Learning (FSL) aims to recognize new classes with limited labeled data. Recent studies have attempted to address the challenge of rare samples with textual prompts to modulate visual features. However, they usually struggle to capture complex semantic relationships between textual and visual features. Moreover, vanilla self-attention is heavily affected by useless information in images, severely constraining the potential of semantic priors in FSL due to the confusion of numerous irrelevant tokens during interaction. To address these aforementioned issues, a K-NN Transformer with Pyramid Prompts (KTPP) is proposed to select discriminative information with K-NN Context Attention (KCA) and adaptively modulate visual features with Pyramid Cross-modal Prompts (PCP). First, for each token, the KCA only selects the K most relevant tokens to compute the self-attention matrix and incorporates the mean of all tokens as the context prompt to provide the global context in three cascaded stages. As a result, irrelevant tokens can be progressively suppressed. Secondly, pyramid prompts are introduced in the PCP to emphasize visual features via interactions between text-based class-aware prompts and multi-scale visual features. This allows the ViT to dynamically adjust the importance weights of visual features based on rich semantic information at different scales, making models robust to spatial variations. Finally, augmented visual features and class-aware prompts are interacted via the KCA to extract class-specific features. Consequently, our model further enhances noise-free visual representations via deep cross-modal interactions, extracting generalized visual representation in scenarios with few labeled samples. Extensive experiments on four benchmark datasets demonstrate the effectiveness of our method.
Abstract:The 3D reconstruction of the surgical field in minimally invasive endoscopic surgery has posed a formidable challenge when using conventional monocular endoscopes. Existing 3D reconstruction methodologies are frequently encumbered by suboptimal accuracy and limited generalization capabilities. In this study, we introduce an innovative pipeline using Neural Radiance Fields (NeRF) for 3D reconstruction. Our approach utilizes a preliminary NeRF reconstruction that yields a coarse model, then creates a binocular scene within the reconstructed environment, which derives an initial depth map via stereo vision. This initial depth map serves as depth supervision for subsequent NeRF iterations, progressively refining the 3D reconstruction with enhanced accuracy. The binocular depth is iteratively recalculated, with the refinement process continuing until the depth map converges, and exhibits negligible variations. Through this recursive process, high-fidelity depth maps are generated from monocular endoscopic video of a realistic cranial phantom. By repeated measures of the final 3D reconstruction compared to X-ray computed tomography, all differences of relevant clinical distances result in sub-millimeter accuracy.
Abstract:Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to high complexity of video generation task. In this paper, we propose \textbf{ConFiner}, an efficient high-quality video generation framework that decouples video generation into easier subtasks: structure \textbf{con}trol and spatial-temporal re\textbf{fine}ment. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
Abstract:The integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection. However, this combination often struggles with capturing semantic information effectively. Moreover, relying solely on point features within regions of interest can lead to information loss and limitations in local feature representation. To tackle these challenges, we propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN). PVAFN leverages an attention mechanism to improve multi-modal feature fusion during the feature extraction phase. In the refinement stage, it utilizes a multi-pooling strategy to integrate both multi-scale and region-specific information effectively. The point-voxel attention mechanism adaptively combines point cloud and voxel-based Bird's-Eye-View (BEV) features, resulting in richer object representations that help to reduce false detections. Additionally, a multi-pooling enhancement module is introduced to boost the model's perception capabilities. This module employs cluster pooling and pyramid pooling techniques to efficiently capture key geometric details and fine-grained shape structures, thereby enhancing the integration of local and global features. Extensive experiments on the KITTI and Waymo datasets demonstrate that the proposed PVAFN achieves competitive performance. The code and models will be available.
Abstract:The household rearrangement task involves spotting misplaced objects in a scene and accommodate them with proper places. It depends both on common-sense knowledge on the objective side and human user preference on the subjective side. In achieving such task, we propose to mine object functionality with user preference alignment directly from the scene itself, without relying on human intervention. To do so, we work with scene graph representation and propose LLM-enhanced scene graph learning which transforms the input scene graph into an affordance-enhanced graph (AEG) with information-enhanced nodes and newly discovered edges (relations). In AEG, the nodes corresponding to the receptacle objects are augmented with context-induced affordance which encodes what kind of carriable objects can be placed on it. New edges are discovered with newly discovered non-local relations. With AEG, we perform task planning for scene rearrangement by detecting misplaced carriables and determining a proper placement for each of them. We test our method by implementing a tiding robot in simulator and perform evaluation on a new benchmark we build. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on misplacement detection and the following rearrangement planning.